
●

●

Carry Chain Adder (1A)

 Copyright (c) 2010 -- 2020 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

mailto:youngwlim@hotmail.com

Carry Chain Adder 3 Young Won Lim
5/19/20

GP Cell

g(i) = 1 If x(i) + y(i) > (B – 1)

0 otherwise

p(i) = 1 If x(i) + y(i) = (B – 1)

0 otherwise

x(i), y(i) : (log2B)-bit number

Generate

Propagate

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

Generate

Propagate

Gi = a i⋅bi

P i = a i+ bi

GP

x(i) y(i)

g(i) p(i)

Carry Chain Adder 4 Young Won Lim
5/19/20

Carry Chain Cell (1)

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

q(i+1)
CCh

g(i) p(i)

q(i)

q(i+1), q(i) : 1-bit number

q(i+1)

otherwise Generate

Propagate= q(i) p(i) = 1 when

= g(i)

cout = Gi + P i ci

Carry Chain Adder 5 Young Won Lim
5/19/20

Carry Chain Cell (2)

q(i+1)

otherwise Generate

Propagate= q(i) p(i) = 1 when

= g(i)

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

q(i+1)

g(i) p(i)=0

q(i)

cout = Gi + P i ci

q(i+1)

g(i) p(i)=1

q(i)
*

Carry Chain Adder 6 Young Won Lim
5/19/20

Mod B Sum Cell

z(i) = (x(i) + y(i) +q(i)) mod B

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

Mod B
Sum

x(i) y(i)

q(i)

z(i)

Carry Chain Adder 7 Young Won Lim
5/19/20

4-ary Carry Chain Addition Example

z(i) = (x(i) + y(i) +q(i)) mod 4

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

g(i) = 1 If x(i) + y(i) > 3

0 otherwise

p(i) = 1 If x(i) + y(i) = 3

0 otherwise

Generate

Propagate

q(i+1)

otherwise Generate

Propagate= q(i) p(i) = 1 when

= g(i)

0 1 2 3
0 0 1 2 3
1 1 2 3 4
2 2 3 4 5
3 3 4 5 6

0 1 2 3
0 0 0 0 1
1 0 0 1 0
2 0 1 0 0
3 1 0 0 0

0 1 2 3
0 0 0 0 0
1 0 0 0 1
2 0 0 1 1
3 0 1 1 1

g(i)

p(i)

Carry Chain Adder 8 Young Won Lim
5/19/20

Carry Chain Adder

GP

CCh

Mod B
Sum

x(0) y(0)

x(0) y(0)

g(0) p(0)

q(0)

z(0)

GP

CCh

Mod B
Sum

x(1) y(1)

x(1) y(1)

g(1) p(1)

q(1)

z(1)

GP

CCh

Mod B
Sum

x(n-1) y(n-1)

x(n-1) y(n-1)

g(n-1) p(n-1)
q(n-1)

z(n-1)

GP

CCh

Mod B
Sum

x(n-2) y(n-2)

x(n-2) y(n-2)

g(n-2) p(n-2)
q(n-2)

z(n-2)

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

q(n)

Carry Chain Adder 9 Young Won Lim
5/19/20

-- computation of the generation and propagation conditions
for i in 0..n-1 loop
 g(i) := g(x(i), y(i));

p(i) := p(x(i), y(i));
end loop

-- carry computation
q(0) := c_in;
for i in 0..n-1 loop
 if p(i)=1 then q(i+1):=q(i); else q(i+1):=g(i); end if;
end loop

-- sum computation
for i in 0..n-1 loop

z(i) := (x(i)+y(i)+q(i)) mod B
end loop;
z(n) := q(n);

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

Carry Chain Addition

Carry Chain Adder 10 Young Won Lim
5/19/20

the first iteraton includes 2.n B-ary operations
computation of g(i) and p(i) that could be executed in parallel
 g(i) := g(x(i), y(i));

p(i) := p(x(i), y(i));

The second iteration is made up of n iteration steps
that must be used executed sequentially
as q(i+1) is a function of q(i)
consists of binary operation only
 if p(i)=1 then q(i+1):=q(i); else q(i+1):=g(i); end if;

the last iteration includes n B-ary operations
computation of z(i) that could be executed in parallel

z(i) := (x(i)+y(i)+q(i)) mod B

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

Computation Decomposition

Carry Chain Adder 11 Young Won Lim
5/19/20

Sequential and concurrent computations

GP

CCh

Mod B
Sum

GP

CCh

Mod B
Sum

GP

CCh

Mod B
Sum

GP

CCh

Mod B
Sum

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

Splits the operations into concurrent B-ary ones (1st and 3rd iterations)
And sequential binary ones (2nd iterations)

Carry Chain Adder 12 Young Won Lim
5/19/20

q(0) <= c_in;

iterative_step for i in 0 to n-1 generate
p(i) <= ‘1’ when x(i)+y(i) = B-1 else ‘0’;
g(i) <= ‘1’ when x(i)+y(i) > B-1 else ‘0’;
with p(i) select q(i+1) <= q(i) when ‘1’, g(i) when others;
z(i) <= (x(i)+y(i)+ conv_integer(q(i))) mod B;

end generate;

c_out <= q(n);

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

B-ary n-digit Carry Chain Adder VHDL Code

Carry Chain Adder 13 Young Won Lim
5/19/20

The sequential binary operations are the same whatever base B is

However, the expected computation time can be reduced
by the substitution of the relatively complex instruction

if x(i)+y(i)+q(i)>B-1 then q(i+1):=1 else q(i+1):=0 end if;

if p(i)=1 then q(i+1):= q(i) else q(i+1):=g(i); end if;

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

Computation Substitution

q(i+1)

g(i) p(i)=0

q(i)q(i+1)

g(i) p(i)=1

q(i)
*

Carry Chain Adder 14 Young Won Lim
5/19/20

if p(i)=1 then q(i+1):= q(i) else q(i+1):=g(i); end if;

the corresponding Boolean equation

q(i+1) = p(i).q(i) V not(p(i)).g(i)

the generate function g(a,b) can be relaxed as bellows

g(a,b) = 1 if a + b > B-1 ….. when p(i) = 0 …. not(p(i))=1
g(a,b) = 0 if a + b < B-1 ….. when p(i) = 0 …. not(p(i))=1
g(a,b) = 1/0 dont care if a + b = B-1 ….. when p(i) = 1 …. not(p(i))=0

the original generate and propagate function

g(a,b) = 1 if a + b > B-1,
g(a,b) = 0 otherwise

p(a,b) = 1 if a + b = B-1,
p(a,b) = 0 otherwise

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

Relaxing g(i)

Carry Chain Adder 15 Young Won Lim
5/19/20

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

0 1 2 3
0 0 1 2 3
1 1 2 3 4
2 2 3 4 5
3 3 4 5 6

0 1 2 3
0 0 0 0 1
1 0 0 1 0
2 0 1 0 0
3 1 0 0 0

0 1 2 3
0 0 0 0 0
1 0 0 0 1
2 0 0 1 1
3 0 1 1 1

g(i)

p(i)

0 1 2 3
0 0 1 2 3
1 1 2 3 4
2 2 3 4 5
3 3 4 5 6

0 1 2 3
0 0 0 0 1
1 0 0 1 0
2 0 1 0 0
3 1 0 0 0

0 1 2 3
0 0 0 0 X
1 0 0 X 1
2 0 X 1 1
3 X 1 1 1

g(i)

p(i)

0 1
0 0 1
1 1 2

0 1
0 0 1
1 1 0

0 1
0 0 X
1 X 1

g(i)

p(i)

Relaxed g(i) Examples

Original g(i) : 4-ary Relaxed g(i) : 4-ary Relaxed g(i) : binary

Carry Chain Adder 16 Young Won Lim
5/19/20

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

q(i)

g(i)
q(i+1)

p(i)

0

1

if p(i)=1 then q(i+1):= q(i) else q(i+1):=g(i); end if;

q(i+1) = p(i).q(i) V not(p(i)).g(i)

0 1
0 0 1
1 1 2

0 1
0 0 1
1 1 0

0 1
0 0 X
1 X 1

g(i)

p(i)

Multiplexer Carry Chain

Carry Chain Adder 17 Young Won Lim
5/19/20

the output node q(i+1) is precharged,
when the synchronization signal is equal to 0 (ck=0),

when ck=1, the output node is discharged
if either p(i) =1 and the preceding node q(i)

has been discharged, or
 if g(i)=1.

In order that it works properly
g(i) and p(i) should not be equal to 1 simultaneously
so that the definition of g(i) cannot be relaxed
as in the preceding case

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

Manchester Carry Chain

ck

g(i)

ck

p(i)

q(i+1) q(i)

Manchester Carry Chain

0 1
0 0 1
1 1 0

0 1
0 0 0
1 0 1

g(i)p(i)

Carry Chain Adder 18 Young Won Lim
5/19/20

Bottle neck : any stage needs information regarding all preceding carry bits
to be able to compute its own sum and carry-out bits

Faster Adders

1) faster carry propagation Manchester Carry Chain Adder
reduction of the time required
for the carry signal to propagate to the cell

2) faster carry generation Carry Lookahead Adder
local computation of the carry, without having to wait for the carry-out
produced by preceding stages

Principles of CMOS VLSI design – A Systems Perspective, N Weste, K Eshraghian

Faster Adders

Carry Chain Adder 19 Young Won Lim
5/19/20

+ + + +

a
0 b

0

s
0

a
1 b

1

s
1

a
2 b

2

s
2

a
3 b

3

s
3

c
0

faster
c

1

faster
c

2

faster
c

3

faster
c

4

Faster Carry Propagation

Digital Electronics and Design with VHDL,V, A< Pedroni

Reduces the time needed for the carry to propagate through the cells

Carry Chain Adder 20 Young Won Lim
5/19/20

+ + + +

a
0 b

0

s
0

a
1 b

1

s
1

a
2 b

2

s
2

a
3 b

3

s
3

c
0

Faster Carry Generation

Digital Electronics and Design with VHDL,V, A< Pedroni

cgen cgen cgen

c
0
 a

0
 b

0 c
0
 a

0
 b

0
 a

1
 b

1 c
0
 a

0
 b

0
 a

1
 b

1
 a

2
 b

2

c
1 c

2 c
4

Each stage computes its own carry-in bit

Carry Chain Adder 21 Young Won Lim
5/19/20

Manchester Carry-Chain Adder
 --- faster carry propagation

carry propagate adder in which
the delay through the carry cells is reduced

Static or Dynamic Circuits

Thanks to the parameter G and P,
The delay is just one gate-delay

Principles of CMOS VLSI design – A Systems Perspective, N Weste, K Eshraghian

Manchester Carry-Chain Adder

Carry Chain Adder 22 Young Won Lim
5/19/20

The Manchester carry chain is
a variation of the carry-lookahead adder
that uses shared logic to lower the transistor count.

the logic for generating each carry contains
all of the logic used to generate the previous carries.

A Manchester carry chain
generates the intermediate carries
by tapping off nodes in the gate that calculates
the most significant carry value.

https://en.wikipedia.org/wiki/Carry-lookahead_adder

Manchester Carry Chain – Shared Logic

c
0

c
1

c
2

c
4

Carry Chain Adder 23 Young Won Lim
5/19/20

The Manchester adder stage improves
on the carry-lookahead implementation
by using a single C

3
 circuit

C
2
, C

1
, C

0
, are tapped to the internal nodes

of the single C
3
 circuit

Principles of CMOS VLSI design – A Systems Perspective, N Weste, K Eshraghian

c
0

c
1

c
2

c
4

Manchester Carry Chain – tap to internal nodes

Carry Chain Adder 24 Young Won Lim
5/19/20

In addition to four Manchester stages,
the adder requires four PG generator blocks
One representative implementation

Four SUM generate blocks an XNOR gate complete the adder
This worst case propagation time can be improved
by bypassing the four stages if all carry propagate signals are true

The optimum number of cascaded stages
may be calculated for a given technology by simulation
A final implementation of a 4-bit Manchester adder

Principles of CMOS VLSI design – A Systems Perspective, N Weste, K Eshraghian

Carry Chain Adder 25 Young Won Lim
5/19/20

G, P, and K

Generate

Propagate

a i bi

cici+ 1

S i

1 1

a i bi

cici+ 1

S i

1 0
0 1

ai⋅bi a i+ bi

Gi = a i⋅bi

P i = a i+ bi
cout = Gi + P i ci

Kill K i = āi⋅b̄i

a i bi

cici+ 1

K i

0 0

a ' i⋅b ' i

0

Carry Chain Adder 26 Young Won Lim
5/19/20

PG Circuits

Generate

Propagate

Gi = a i⋅bi

P i = a i+ bi

&

+
&

ai⋅bi Gi = a i⋅bi

P i = a i+ bi

ai+bi
(ai+bi)(ai⋅bi)

(ai+bi)+(ai⋅bi)

ai⋅bi+ai⋅bi

(ai+bi)(ai⋅bi)

(ai+bi)⋅(ai+bi)

ai⋅bi+ai⋅bi

Carry Chain Adder 27 Young Won Lim
5/19/20

Carry Equations (1)

ci+1 = Gi + Pi ci

G0 + P0 c0 = c1
G1 + P1G0 + P1P 0c0 = c2

G2 + P2G1 + P 2P1G0 + P2 P1P 0c0 = c3
G3 + P3G2 + P3 P2G1 + P3 P2 P1G0 + P3P 2P1 P0c0 = c4

c
i
 : carry in of the i-th stage

CCh

Gi Pi

c i+1 c i

c1 = G0 + P0 c0
c2 = G1 + P1c1
c3 = G2 + P2 c2
c4 = G3 + P3 c3

c1 = G0 + P0 c0
c2 = G1 + P1 [G0 + P0c0]
c3 = G2 + P2 [G1 + P1 [G0 + P0c0]]
c4 = G3 + P3 [G2 + P2 [G1 + P1 [G0 + P0 c0]]]

Carry Chain Adder Carry Lookahead Adder

CCh

G0 P0

c1 c0

Carry Chain Adder 28 Young Won Lim
5/19/20

Carry Equations (2)

ci = Gi + Pi ci−1

c0 = G0 + P0ci n
c1 = G1 + P1c0
c2 = G2 + P2c1
c3 = G3 + P3c2

G0 + P0 ci n = c0
G1 + P1G0 + P1P0ci n = c1

G2 + P2G1 + P2P1G0 + P2 P1P0ci n = c2
G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3 P2P1P0c i n = c3

c0 = G0 + P0ci n
c1 = G1 + P1 [G0 + P0 cin]
c2 = G2 + P2 [G1 + P1 [G0 + P0 cin]]
c3 = G3 + P3 [G2 + P2 [G1 + P1 [G0 + P0ci n]]]

c
i
 : carry out of the i-th stage

CCh

Gi Pi

c i c i−1

Carry Chain Adder Carry Lookahead Adder

CCh

G0 P0

c0 c i n

Carry Chain Adder 29 Young Won Lim
5/19/20

Carry Chain Adder

GP

CCh

Mod B
Sum

x(0) y(0)

x(0) y(0)

g(0) p(0)

q(0)

z(0)

GP

CCh

Mod B
Sum

x(1) y(1)

x(1) y(1)

g(1) p(1)

q(1)

z(1)

GP

CCh

Mod B
Sum

x(3) y(3)

x(3) y(3)

g(3) p(3)
q(3)

z(3)

GP

CCh

Mod B
Sum

x(2) y(2)

x(2) y(2)

g(2) p(2)
q(2)

z(2)

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

q(4)

Carry Chain Adder 30 Young Won Lim
5/19/20

Carry Lookahead Adder

GP

Mod B
Sum

x(0) y(0)

x(0) y(0)

g(0) p(0)

q(0)

z(0)

GP

Mod B
Sum

x(1) y(1)

x(1) y(1)

g(1) p(1)

z(1)

GP

CGen C
4

Mod B
Sum

x(3) y(3)

x(3) y(3)

g(3) p(3)

z(3)

GP

Mod B
Sum

x(2) y(2)

x(2) y(2)

g(2) p(2)

z(2)

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

CGen C
3

CGen C
2

CGen C
1

q(1)q(2)q(3)q(4)

Carry Chain Adder 31 Young Won Lim
5/19/20

Carry section of FA

Cin

Digital Electronics and Design with VHDL,V, A< Pedroni

a b

a b

b

a

a

b

Propagate

Propagate Generate

Kill

Cout

G = a⋅b

K = ā⋅̄b

Carry Chain Adder 32 Young Won Lim
5/19/20

Static Carry Circuit

Principles of CMOS VLSI design – A Systems Perspective, N Weste, K Eshraghian

P
0

G
0

G3

G
1

G
2

P
3

P
3

P
3

P
3

P
2

P
2

P
1

P
1

C
in

Cout = C3

P
2

P3P2 P1P0C in

P3P2 P1G0

P3P2G1

P3G2

G3

G3 + P3G2 + P3 P2G1 + P3 P2 P1G0 + P3P2 P1P0c in = c3

Carry Chain Adder 33 Young Won Lim
5/19/20

Static Carry Circuit – using G, P

C
in C

out

P

P

G

G

Digital Electronics and Design with VHDL,V, A< Pedroni

G = a⋅b

P

P cannot be relaxed

P = a⊕b P = a + b

Carry Chain Adder 34 Young Won Lim
5/19/20

Static Carry Circuit – using G, P

C
in C

out
 = C

in

P

P

G

G

Digital Electronics and Design with VHDL,V, A< Pedroni

P

C
in C

out
 = 0

P

P

G

G

P

C
in C

out
 = 1

P

P

G

G

P

G = a⋅b

P = a⊕b

(P=1)∧(G=0) (P=0)∧(G=1)

(P=0)∧(G=0)

Carry Chain Adder 35 Young Won Lim
5/19/20

Static Carry Circuit – using G, P, K

C
in C

out

P

P

G

K

Digital Electronics and Design with VHDL,V, A< Pedroni

G = a⋅b

K = ā⋅̄b

P = a⊕b

Carry Chain Adder 36 Young Won Lim
5/19/20

Static Carry Circuit – using G, P, K

C
in C

out
 = C

in

P
K

Digital Electronics and Design with VHDL,V, A< Pedroni

C
in C

out
 = 1

P
K

C
in

P
K

P
G

P
G

P
G

P = a⊕b G = a⋅b

K = ā⋅̄b

C
out

 = 0

Carry Chain Adder 37 Young Won Lim
5/19/20

Static Carry Circuit – using Multiplexer

Digital Electronics and Design with VHDL,V, A< Pedroni

C
in

P

P

G

P

C
out

C
in

G
C

out

P

0

1

Carry Chain Adder 38 Young Won Lim
5/19/20

Static Carry Circuit – using Multiplexer

Digital Electronics and Design with VHDL,V, A< Pedroni

C
in

P=0

P=1

G

P=0

C
out

C
in

G
C

out

P

0

1

C
in

P=1

P=0

G

P=1

C
out

C
in

G
C

out

P

0

1

Carry Chain Adder 39 Young Won Lim
5/19/20

Static Carry Circuit – using multiplexers

Digital Electronics and Design with VHDL,V, A< Pedroni

C
in

G

C
out

P

C
in

G

C
out

P

C
in

G

C
out

P

C
in

G

C
out

P

C
in

Ck

C
in

Ck

C
0 C

1 C
2 C

3

G
0 P

0
G

1 P
1

G
2 P

2
G

3 P
3

P P P P

P
0 P

1 P
2 P

3

C
in

P

P

G

P

C
out

C
in

G
C

out

P

0

1

Carry Chain Adder 40 Young Won Lim
5/19/20

Principles of CMOS VLSI design – A Systems Perspective, N Weste, K Eshraghian

Static Carry Circuit – using multiplexers

GP

CCh

Mod B
Sum

GP

CCh

Mod B
Sum

GP

CCh

Mod B
Sum

GP

CCh

Mod B
Sum

C
in C

0 C
1 C

2 C
3

G
0 P

0
G

1 P
1

G
2 P

2
G

3 P
3

0

1

0

1

0

1

0

1

Carry Chain Adder 41 Young Won Lim
5/19/20

A multiplexer-based 4-bit adder

cascading four such stages
supplying P

i
, G

i

This is commonly called
a Manchester carry adder

not Manchester carry chain adder

There is some similarity with the domino carry circuit (nMos)
Manchester carry chain adder

However, the intermediate carry gates are no longer needed, (G
i
, P

i
)

Because the carry values are available in a distributed fashion

Principles of CMOS VLSI design – A Systems Perspective, N Weste, K Eshraghian

Static Carry Circuit – using multiplexers

C
in C

0 C
1 C

2 C
3

G
0 P

0
G

1 P
1

G
2 P

2
G

3 P
3

0

1

0

1

0

1

0

1

Carry Chain Adder 42 Young Won Lim
5/19/20

The 4-bit adder is chosen to reduce
the number of series-propagate transistors
Which improves the speed

Note that if all propagate signals are true,
and CI is high , six series n-transistors
Pull the output node lo in the case of the dynamic gate
While five transistors re in series in the static gate

Principles of CMOS VLSI design – A Systems Perspective, N Weste, K Eshraghian

Static Carry Circuit – using multiplexers

C
in C

0 C
1 C

2 C
3

G
0 P

0
G

1 P
1

G
2 P

2
G

3 P
3

0

1

0

1

0

1

0

1

Carry Chain Adder 43 Young Won Lim
5/19/20

However, not all logic families have these internal nodes,
CMOS being a major example.

Dynamic logic can support shared logic,
as can transmission gate logic.

One of the major downsides of the Manchester carry chain
is that the capacitive load of all of these outputs,
together with the resistance of the transistors causes
the propagation delay to increase much more quickly
than a regular carry lookahead.

A Manchester-carry-chain section generally
doesn't exceed 4 bits.

https://en.wikipedia.org/wiki/Carry-lookahead_adder

Manchester Carry Chain – Dynamic Logic

Carry Chain Adder 44 Young Won Lim
5/19/20

Dynamic Carry Circuit – using G, P

C
in C

out

P

Ck

G

Principles of CMOS VLSI design – A Systems Perspective, N Weste, K Eshraghian

Ck

When CLK is low, the output node
is precharged by the pull-up transistor

Ck

Carry Chain Adder 45 Young Won Lim
5/19/20

Dynamic Carry Circuit – using G, P

C
in C

out

P

Ck

G

Principles of CMOS VLSI design – A Systems Perspective, N Weste, K Eshraghian

Ck

When CLK goes high,
the n pull-down transistor turns on
If carry generate G=AB is true,

then the output node discharge

Ck

ci = Gi + Pi ci−1

Carry Chain Adder 46 Young Won Lim
5/19/20

Dynamic Carry Circuit – using G, P

C
in C

out

P

Ck

G

Principles of CMOS VLSI design – A Systems Perspective, N Weste, K Eshraghian

Ck

When CLK goes high,
the n pull-down transistor turns on
If carry propagate P=A+B is true,

then a previous carry may be coupled
to the output node,
conditionally discharging it

Note that in this circuit CARRY is actually propagated

Ck ci = Gi + Pi ci−1

Carry Chain Adder 47 Young Won Lim
5/19/20

Dynamic Carry Circuit – using G, P

P

Ck

G

Digital Electronics and Design with VHDL,V, A< Pedroni

Ck

P

Ck

G

Ck

C
in C

outC
in C

out

This requires P must not be relaxed 0 1
0 0 1
1 1 0

0 1
0 0 0
1 0 1

g(i)p(i)

ci = Gi + Pi ci−1 ci = Gi + Pi ci−1

P = a⊕b

Carry Chain Adder 48 Young Won Lim
5/19/20

Dynamic Manchester Carry-Chain Adder

Digital Electronics and Design with VHDL,V, A< Pedroni

ck

C
in

ck

ck

G
0

ck

ck

G
1

ck

ck

G
2

ck

P
0 P

1 P
2

C
0

C
1

C
2

C
3

Carry Chain Adder 49 Young Won Lim
5/19/20

Other representation I

Digital Electronics and Design with VHDL,V, A< Pedroni

ck

C
in

ck

ck

G
0

ck

ck

G
1

ck

ck

G
2

ck

P
0

P
1

P
2

C
0

C
1

C
2

C
3

Carry Chain Adder 50 Young Won Lim
5/19/20

Other representation II

Digital Electronics and Design with VHDL,V, A< Pedroni

ck

C
in

ck

ck

G
0

ck

ck

G
1

ck

ck

G
2

ck

P
0

P
1

P
2

C
0

C
1

C
2

C
3

Carry Chain Adder 51 Young Won Lim
5/19/20

Dynamic Carry Circuit – C0

C
0

Ck

P
0

Ck

C
in

G
0

Principles of CMOS VLSI design – A Systems Perspective, N Weste, K Eshraghian

cout = Pci + G

c0 = G0 + P0ci n

Carry Chain Adder 52 Young Won Lim
5/19/20

Dynamic Carry Circuit – C0, C1, C2, C3

Principles of CMOS VLSI design – A Systems Perspective, N Weste, K Eshraghian

c0 = G0 + P0ci n c1 = G1 + P1c0 c2 = G2 + P2c1 c3 = G3 + P3c2

C
0

Ck

P
0

Ck

C
in

G
0

C
1

Ck

P
1

Ck

C
0

G
1

C
2

Ck

P
2

Ck

C
1

G
2

C
3

Ck

P
3

Ck

C
2

G
3

Carry Chain Adder 53 Young Won Lim
5/19/20

Dynamic Carry Circuit – C1

C
1

Ck

P
1

Ck

G
1

Principles of CMOS VLSI design – A Systems Perspective, N Weste, K Eshraghian

P
0

C
in

G
0

C
1

Ck

P
1

Ck

G
1

P
0

C
in

G
0

c0 = G0 + P0ci n
c1 = G1 + P1c0

Carry Chain Adder 54 Young Won Lim
5/19/20

Dynamic Carry Circuit – C2 (1)

C
2

Ck

P
1

Ck

G
1

Principles of CMOS VLSI design – A Systems Perspective, N Weste, K Eshraghian

P
0

Cin

G
0

P
2

G
2

c0 = G0 + P0ci n
c1 = G1 + P1c0
c2 = G2 + P2c1

Carry Chain Adder 55 Young Won Lim
5/19/20

Dynamic Carry Circuit – C2 (2)

Principles of CMOS VLSI design – A Systems Perspective, N Weste, K Eshraghian

C
2

Ck

P
1

Ck

G
1

P
0

Cin

G
0

P
2

G
2

c0 = G0 + P0ci n
c1 = G1 + P1c0
c2 = G2 + P2c1

Carry Chain Adder 56 Young Won Lim
5/19/20

Dynamic Carry Circuit – C3 (1)

Ck

P
1

Ck

G
1

Principles of CMOS VLSI design – A Systems Perspective, N Weste, K Eshraghian

P
0

Cin

G
0

P
2

G
2

P
3

C
3

G
3

c0 = G0 + P0ci n
c1 = G1 + P1c0
c2 = G2 + P2c1
c3 = G3 + P3c2

Carry Chain Adder 57 Young Won Lim
5/19/20

Dynamic Carry Circuit – C3 (2)

Principles of CMOS VLSI design – A Systems Perspective, N Weste, K Eshraghian

C
3

Ck

P
1

Ck

G
1

P
0

Cin

G
0

P
2

G
2

P
2 G

2

c0 = G0 + P0ci n
c1 = G1 + P1c0
c2 = G2 + P2c1
c3 = G3 + P3c2

Carry Chain Adder 58 Young Won Lim
5/19/20

Dynamic Carry Circuit – C3 (3)

Principles of CMOS VLSI design – A Systems Perspective, N Weste, K Eshraghian

C
0

Ck

P
0

Ck

C
in

G
0

C
1

Ck

P
1

Ck

C
0

G
1

C
2

Ck

P
2

Ck

C
1

G
2

C
3

Ck

P
3

Ck

C
2

G
3

Ck

P
1

Ck

G
1

P
0

Cin

G
0

P
2 G

2

P
3

C
3

G
3

c0 = G0 + P0ci n c1 = G1 + P1c0

c2 = G2 + P2c1 c3 = G3 + P3c2

Carry Chain Adder 59 Young Won Lim
5/19/20

References

[1] http://en.wikipedia.org/
[2] J-P Deschamps,et. al., “Sunthesis of Arithmetic Circuits”, 2006

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

