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GP Cell

g(i) = 1 If x(i) + y(i) > (B – 1) 

0 otherwise

p(i) = 1 If x(i) + y(i) =  (B – 1)  

0 otherwise

x(i), y(i) : (log2B)-bit number 

Generate

Propagate
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Generate

Propagate

Gi = a i⋅bi

P i = a i+ bi

GP

x(i) y(i)

g(i) p(i)
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Carry Chain Cell (1) 
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q(i+1)
CCh

g(i) p(i)

q(i)

q(i+1), q(i) : 1-bit number 

q(i+1) 

otherwise Generate

Propagate= q(i) p(i) = 1 when

= g(i)

cout = Gi + P i ci
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Carry Chain Cell (2) 

q(i+1) 

otherwise Generate

Propagate= q(i) p(i) = 1 when

= g(i)
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q(i+1)

g(i) p(i)=0

q(i)

cout = Gi + P i ci

q(i+1)

g(i) p(i)=1

q(i)
*
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Mod B Sum Cell  

z(i) = (x(i) + y(i) +q(i)) mod B

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

Mod B
Sum

x(i) y(i)

q(i)

z(i)
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4-ary Carry Chain Addition Example 

z(i) = (x(i) + y(i) +q(i)) mod 4

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

g(i) = 1 If x(i) + y(i) > 3 

0 otherwise

p(i) = 1 If x(i) + y(i) =  3  

0 otherwise

Generate

Propagate

q(i+1) 

otherwise Generate

Propagate= q(i) p(i) = 1 when

= g(i)

0 1 2 3
0 0 1 2 3
1 1 2 3 4
2 2 3 4 5
3 3 4 5 6

0 1 2 3
0 0 0 0 1
1 0 0 1 0
2 0 1 0 0
3 1 0 0 0

0 1 2 3
0 0 0 0 0
1 0 0 0 1
2 0 0 1 1
3 0 1 1 1

g(i)

p(i) 
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Carry Chain Adder

GP

CCh

Mod B
Sum

x(0) y(0)

x(0) y(0)

g(0) p(0)

q(0)

z(0)

GP

CCh

Mod B
Sum

x(1) y(1)

x(1) y(1)

g(1) p(1)

q(1)

z(1)

GP

CCh

Mod B
Sum

x(n-1) y(n-1)

x(n-1) y(n-1)

g(n-1) p(n-1)
q(n-1)

z(n-1)

GP

CCh

Mod B
Sum

x(n-2) y(n-2)

x(n-2) y(n-2)

g(n-2) p(n-2)
q(n-2)

z(n-2)
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q(n)
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-- computation of the generation and propagation conditions
for i in 0..n-1 loop 
   g(i) := g(x(i), y(i)); 

p(i) := p(x(i), y(i));
end loop

-- carry computation 
q(0) := c_in;
for i in 0..n-1 loop
  if p(i)=1 then q(i+1):=q(i); else q(i+1):=g(i); end if;
end loop

-- sum computation
for i in 0..n-1 loop 

z(i) := (x(i)+y(i)+q(i)) mod B 
end loop;
z(n) := q(n);

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

Carry Chain Addition 
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the first iteraton includes 2.n B-ary operations
computation of g(i) and p(i) that could be executed in parallel
   g(i) := g(x(i), y(i)); 

p(i) := p(x(i), y(i));

The second iteration is made up of n iteration steps
that must be used executed sequentially 
as q(i+1) is a function of q(i)
consists of binary operation only
  if p(i)=1 then q(i+1):=q(i); else q(i+1):=g(i); end if;

the last iteration includes n B-ary operations 
computation of z(i) that could be executed in parallel

z(i) := (x(i)+y(i)+q(i)) mod B 

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

Computation Decomposition
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Sequential and concurrent computations

GP

CCh

Mod B
Sum

GP

CCh

Mod B
Sum

GP

CCh

Mod B
Sum

GP

CCh

Mod B
Sum

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

Splits the operations into concurrent B-ary ones (1st and 3rd iterations)
And sequential binary ones (2nd iterations)
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q(0) <= c_in;

iterative_step for i in 0 to n-1 generate
p(i) <= ‘1’ when x(i)+y(i) = B-1 else ‘0’;
g(i) <= ‘1’ when x(i)+y(i) > B-1 else ‘0’;
with p(i) select q(i+1) <= q(i) when ‘1’, g(i) when others;
z(i) <= (x(i)+y(i)+ conv_integer(q(i))) mod B;

end generate;

c_out <= q(n);

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

B-ary n-digit Carry Chain Adder VHDL Code 
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The sequential binary operations are the same whatever base B is 

However, the expected computation time can be reduced
by the substitution of the relatively complex instruction 

if x(i)+y(i)+q(i)>B-1 then q(i+1):=1 else q(i+1):=0 end if;

if p(i)=1 then q(i+1):= q(i) else q(i+1):=g(i); end if;

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

Computation Substitution

q(i+1)

g(i) p(i)=0

q(i)q(i+1)

g(i) p(i)=1

q(i)
*
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if p(i)=1 then q(i+1):= q(i) else q(i+1):=g(i); end if;

the corresponding Boolean equation

q(i+1) = p(i).q(i) V not(p(i)).g(i)

the generate function g(a,b) can be relaxed as bellows

g(a,b) = 1 if a + b > B-1 ….. when p(i) = 0 …. not(p(i))=1
g(a,b) = 0 if a + b < B-1 ….. when p(i) = 0 …. not(p(i))=1
g(a,b) = 1/0 dont care if a + b = B-1 ….. when p(i) = 1 …. not(p(i))=0

the original generate and propagate function 

g(a,b) = 1 if a + b > B-1,
g(a,b) = 0 otherwise

p(a,b) = 1 if a + b = B-1,
p(a,b) = 0 otherwise

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

Relaxing g(i)
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0 1 2 3
0 0 1 2 3
1 1 2 3 4
2 2 3 4 5
3 3 4 5 6

0 1 2 3
0 0 0 0 1
1 0 0 1 0
2 0 1 0 0
3 1 0 0 0

0 1 2 3
0 0 0 0 0
1 0 0 0 1
2 0 0 1 1
3 0 1 1 1

g(i)

p(i) 

0 1 2 3
0 0 1 2 3
1 1 2 3 4
2 2 3 4 5
3 3 4 5 6

0 1 2 3
0 0 0 0 1
1 0 0 1 0
2 0 1 0 0
3 1 0 0 0

0 1 2 3
0 0 0 0 X
1 0 0 X 1
2 0 X 1 1
3 X 1 1 1

g(i)

p(i) 

0 1
0 0 1
1 1 2

0 1
0 0 1
1 1 0

0 1
0 0 X
1 X 1

g(i)

p(i) 

Relaxed g(i) Examples

Original g(i) : 4-ary Relaxed g(i) : 4-ary Relaxed g(i) : binary
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q(i) 

g(i)
q(i+1) 

p(i) 

0

1

if p(i)=1 then q(i+1):= q(i) else q(i+1):=g(i); end if;

q(i+1) = p(i).q(i) V not(p(i)).g(i)

0 1
0 0 1
1 1 2

0 1
0 0 1
1 1 0

0 1
0 0 X
1 X 1

g(i)

p(i) 

Multiplexer Carry Chain 
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the output node q(i+1) is precharged, 
when the synchronization signal  is equal to 0 (ck=0),

when ck=1, the output node is discharged 
if either p(i) =1 and the preceding node q(i)

has been discharged, or
   if g(i)=1.

In order that it works properly 
g(i) and p(i) should not be equal to 1 simultaneously
so that the definition of g(i) cannot be relaxed
as in the preceding case

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

Manchester Carry Chain 

ck

g(i)

ck

p(i) 

q(i+1) q(i) 

Manchester Carry Chain 

0 1
0 0 1
1 1 0

0 1
0 0 0
1 0 1

g(i)p(i) 
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Bottle neck : any stage needs information regarding all preceding carry bits
to be able to compute its own sum and carry-out bits

Faster Adders

1) faster carry propagation Manchester Carry Chain Adder
reduction of the time required 
for the carry signal to propagate to the cell

2) faster carry generation Carry Lookahead Adder 
local computation of the carry, without having to wait for the carry-out
produced by preceding stages

Principles of CMOS VLSI design – A Systems Perspective, N Weste, K Eshraghian

Faster Adders
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+ + + +

a
0 b

0

s
0

a
1 b

1

s
1

a
2 b

2

s
2

a
3 b

3

s
3

c
0

faster 
c

1

faster 
c

2

faster 
c

3

faster 
c

4

Faster Carry Propagation 

Digital Electronics and Design with VHDL,V, A< Pedroni 

Reduces the time needed for the carry to propagate through the cells 
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+ + + +

a
0 b

0

s
0

a
1 b

1

s
1

a
2 b

2

s
2

a
3 b

3

s
3

c
0

Faster Carry Generation 

Digital Electronics and Design with VHDL,V, A< Pedroni 

cgen cgen cgen

c
0
 a

0
 b

0 c
0
 a

0
 b

0
 a

1
 b

1 c
0
 a

0
 b

0
 a

1
 b

1 
 a

2
 b

2 

c
1 c

2 c
4

Each stage computes its own carry-in bit 
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Manchester Carry-Chain Adder
 --- faster carry propagation

carry propagate adder in which 
the delay through the carry cells is reduced

Static or Dynamic Circuits

Thanks to the parameter G and P,
The delay is just one gate-delay

Principles of CMOS VLSI design – A Systems Perspective, N Weste, K Eshraghian

Manchester Carry-Chain Adder 
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The Manchester carry chain is 
a variation of the carry-lookahead adder
that uses shared logic to lower the transistor count. 

the logic for generating each carry contains 
all of the logic used to generate the previous carries. 

A Manchester carry chain 
generates the intermediate carries 
by tapping off nodes in the gate that calculates 
the most significant carry value. 

https://en.wikipedia.org/wiki/Carry-lookahead_adder

Manchester Carry Chain – Shared Logic

c
0

c
1

c
2

c
4
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The Manchester adder stage improves 
on the carry-lookahead implementation 
by using a single C

3
 circuit

C
2
, C

1
, C

0
, are tapped to the internal nodes 

of the single C
3
 circuit

Principles of CMOS VLSI design – A Systems Perspective, N Weste, K Eshraghian

c
0

c
1

c
2

c
4

Manchester Carry Chain – tap to internal nodes
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In addition to four Manchester stages, 
the adder requires four PG generator blocks
One representative implementation 

Four SUM generate blocks an XNOR gate complete the adder
This worst case propagation time can be improved 
by bypassing the four stages if all carry propagate signals are true

The optimum number of cascaded stages 
may be calculated for a given technology by simulation
A final implementation of a 4-bit Manchester adder

Principles of CMOS VLSI design – A Systems Perspective, N Weste, K Eshraghian
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G, P, and K

Generate

Propagate

a i bi

cici+ 1

S i

1 1

a i bi

cici+ 1

S i

1 0
0 1

ai⋅bi a i+ bi

Gi = a i⋅bi

P i = a i+ bi
cout = Gi + P i ci

Kill K i = āi⋅b̄i

a i bi

cici+ 1

K i

0 0

a ' i⋅b ' i

0
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PG Circuits

Generate

Propagate

Gi = a i⋅bi

P i = a i+ bi

&

+
&

ai⋅bi Gi = a i⋅bi

P i = a i+ bi

ai+bi
(ai+bi)(ai⋅bi)

(ai+bi)+(ai⋅bi)

ai⋅bi+ai⋅bi

(ai+bi)(ai⋅bi)

(ai+bi)⋅(ai+bi)

ai⋅bi+ai⋅bi
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Carry Equations (1)

ci+1 = Gi + Pi ci

G0 + P0 c0 = c1
G1 + P1G0 + P1P 0c0 = c2

G2 + P2G1 + P 2P1G0 + P2 P1P 0c0 = c3
G3 + P3G2 + P3 P2G1 + P3 P2 P1G0 + P3P 2P1 P0c0 = c4

c
i
 : carry in  of the i-th stage

CCh

Gi Pi

c i+1 c i

c1 = G0 + P0 c0
c2 = G1 + P1c1
c3 = G2 + P2 c2
c4 = G3 + P3 c3

c1 = G0 + P0 c0
c2 = G1 + P1 [G0 + P0c0 ]
c3 = G2 + P2 [G1 + P1 [G0 + P0c0 ] ]
c4 = G3 + P3 [G2 + P2 [G1 + P1 [G0 + P0 c0 ] ] ]

Carry Chain Adder Carry Lookahead Adder

CCh

G0 P0

c1 c0
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Carry Equations (2)

ci = Gi + Pi ci−1

c0 = G0 + P0ci n
c1 = G1 + P1c0
c2 = G2 + P2c1
c3 = G3 + P3c2

G0 + P0 ci n = c0
G1 + P1G0 + P1P0ci n = c1

G2 + P2G1 + P2P1G0 + P2 P1P0ci n = c2
G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3 P2P1P0c i n = c3

c0 = G0 + P0ci n
c1 = G1 + P1 [G0 + P0 cin ]
c2 = G2 + P2 [G1 + P1 [G0 + P0 cin ] ]
c3 = G3 + P3 [G2 + P2 [G1 + P1 [G0 + P0ci n ] ] ]

c
i
 : carry out  of the i-th stage

CCh

Gi Pi

c i c i−1

Carry Chain Adder Carry Lookahead Adder

CCh

G0 P0

c0 c i n
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Carry Chain Adder

GP

CCh

Mod B
Sum

x(0) y(0)

x(0) y(0)

g(0) p(0)

q(0)

z(0)

GP

CCh

Mod B
Sum

x(1) y(1)

x(1) y(1)

g(1) p(1)

q(1)

z(1)

GP

CCh

Mod B
Sum

x(3) y(3)

x(3) y(3)

g(3) p(3)
q(3)

z(3)

GP

CCh

Mod B
Sum

x(2) y(2)

x(2) y(2)

g(2) p(2)
q(2)

z(2)

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

q(4)
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Carry Lookahead Adder

GP

Mod B
Sum

x(0) y(0)

x(0) y(0)

g(0) p(0)

q(0)

z(0)

GP

Mod B
Sum

x(1) y(1)

x(1) y(1)

g(1) p(1)

z(1)

GP

CGen C
4
 

Mod B
Sum

x(3) y(3)

x(3) y(3)

g(3) p(3)

z(3)

GP

Mod B
Sum

x(2) y(2)

x(2) y(2)

g(2) p(2)

z(2)

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

CGen C
3
 

CGen C
2
 

CGen C
1
 

q(1)q(2)q(3)q(4)



Carry Chain Adder 31 Young Won Lim
5/19/20

Carry section of FA

Cin

Digital Electronics and Design with VHDL,V, A< Pedroni 

a b

a b

b

a

a

b

Propagate

Propagate Generate

Kill

Cout

G = a⋅b

K = ā⋅̄b
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Static Carry Circuit 

Principles of CMOS VLSI design – A Systems Perspective, N Weste, K Eshraghian

P
0

G
0

G3

G
1

G
2

P
3

P
3

P
3

P
3

P
2

P
2

P
1

P
1

C
in

Cout = C3

P
2

P3P2 P1P0C in

P3P2 P1G0

P3P2G1

P3G2

G3

G3 + P3G2 + P3 P2G1 + P3 P2 P1G0 + P3P2 P1P0c in = c3
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Static Carry Circuit – using G, P

C
in C

out

P

P

G

G

Digital Electronics and Design with VHDL,V, A< Pedroni 

G = a⋅b

P

P cannot be relaxed

P = a⊕b P = a + b



Carry Chain Adder 34 Young Won Lim
5/19/20

Static Carry Circuit – using G, P

C
in C

out
 = C

in

P

P

G

G

Digital Electronics and Design with VHDL,V, A< Pedroni 

P

C
in C

out
 = 0

P

P

G

G

P

C
in C

out
 = 1

P

P

G

G

P

G = a⋅b

P = a⊕b

(P=1)∧(G=0) (P=0)∧(G=1)

(P=0)∧(G=0)
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Static Carry Circuit – using G, P, K

C
in C

out

P

P

G

K

Digital Electronics and Design with VHDL,V, A< Pedroni 

G = a⋅b

K = ā⋅̄b

P = a⊕b
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Static Carry Circuit – using G, P, K

C
in C

out
 = C

in

P
K

Digital Electronics and Design with VHDL,V, A< Pedroni 

C
in C

out
 = 1

P
K

C
in

P
K

P
G

P
G

P
G

P = a⊕b G = a⋅b

K = ā⋅̄b

C
out

 = 0
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Static Carry Circuit – using Multiplexer

Digital Electronics and Design with VHDL,V, A< Pedroni 

C
in

P

P

G

P

C
out

C
in

G
C

out

P

0

1
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Static Carry Circuit – using Multiplexer

Digital Electronics and Design with VHDL,V, A< Pedroni 

C
in

P=0

P=1

G

P=0

C
out

C
in

G
C

out

P

0

1

C
in

P=1

P=0

G

P=1

C
out

C
in

G
C

out

P

0

1
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Static Carry Circuit – using multiplexers

Digital Electronics and Design with VHDL,V, A< Pedroni 

C
in

G

C
out

P

C
in

G

C
out

P

C
in

G

C
out

P

C
in

G

C
out

P

C
in

Ck

C
in

Ck

C
0 C

1 C
2 C

3

G
0 P

0
G

1 P
1

G
2 P

2
G

3 P
3

P P P P

P
0 P

1 P
2 P

3

C
in

P

P

G

P

C
out

C
in

G
C

out

P

0

1
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Principles of CMOS VLSI design – A Systems Perspective, N Weste, K Eshraghian

Static Carry Circuit – using multiplexers

GP

CCh

Mod B
Sum

GP

CCh

Mod B
Sum

GP

CCh

Mod B
Sum

GP

CCh

Mod B
Sum

C
in C

0 C
1 C

2 C
3

G
0 P

0
G

1 P
1

G
2 P

2
G

3 P
3

0

1

0

1

0

1

0

1
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A multiplexer-based 4-bit adder 

cascading four such stages
supplying P

i
, G

i
 

This is commonly called 
a Manchester carry adder

not Manchester carry chain adder

There is some similarity with the domino carry circuit (nMos)
Manchester carry chain adder

However, the intermediate carry gates are no longer needed, (G
i
, P

i
)

Because the carry values are available in a distributed fashion

Principles of CMOS VLSI design – A Systems Perspective, N Weste, K Eshraghian

Static Carry Circuit – using multiplexers

C
in C

0 C
1 C

2 C
3

G
0 P

0
G

1 P
1

G
2 P

2
G

3 P
3

0

1

0

1

0

1

0

1
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The 4-bit adder is chosen to reduce 
the number of  series-propagate transistors
Which improves the speed

Note that if all propagate signals are true, 
and CI is high , six series n-transistors
Pull the output node lo in the case of the dynamic gate 
While five transistors re in series in the static gate

Principles of CMOS VLSI design – A Systems Perspective, N Weste, K Eshraghian

Static Carry Circuit – using multiplexers

C
in C

0 C
1 C

2 C
3

G
0 P

0
G

1 P
1

G
2 P

2
G

3 P
3

0

1

0

1

0

1

0

1
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However, not all logic families have these internal nodes, 
CMOS being a major example. 

Dynamic logic can support shared logic, 
as can transmission gate logic. 

One of the major downsides of the Manchester carry chain 
is that the capacitive load of all of these outputs, 
together with the resistance of the transistors causes 
the propagation delay to increase much more quickly 
than a regular carry lookahead. 

A Manchester-carry-chain section generally 
doesn't exceed 4 bits. 

https://en.wikipedia.org/wiki/Carry-lookahead_adder

Manchester Carry Chain – Dynamic Logic
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Dynamic Carry Circuit – using G, P
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When CLK is low, the output node 
is precharged by the pull-up transistor

Ck
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Dynamic Carry Circuit – using G, P 

C
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Ck

When CLK goes high, 
the n pull-down transistor turns on
If carry generate G=AB is true,

then the output node discharge

Ck

ci = Gi + Pi ci−1
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Dynamic Carry Circuit – using G, P 

C
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G
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Ck

When CLK goes high, 
the n pull-down transistor turns on
If carry propagate P=A+B is true, 

then a previous carry may be coupled 
to the output node, 
conditionally discharging it

Note that in this circuit CARRY is actually propagated 

Ck ci = Gi + Pi ci−1
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Dynamic Carry Circuit – using G, P
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ci = Gi + Pi ci−1 ci = Gi + Pi ci−1

P = a⊕b
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Dynamic Manchester Carry-Chain Adder 

Digital Electronics and Design with VHDL,V, A< Pedroni 
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Other representation I 

Digital Electronics and Design with VHDL,V, A< Pedroni 
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Other representation II

Digital Electronics and Design with VHDL,V, A< Pedroni 
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Dynamic Carry Circuit – C0
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cout = Pci + G

c0 = G0 + P0ci n
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Dynamic Carry Circuit – C0, C1, C2, C3  

Principles of CMOS VLSI design – A Systems Perspective, N Weste, K Eshraghian

c0 = G0 + P0ci n c1 = G1 + P1c0 c2 = G2 + P2c1 c3 = G3 + P3c2
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Dynamic Carry Circuit – C1
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Dynamic Carry Circuit – C2 (1) 
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Dynamic Carry Circuit – C2  (2)
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Dynamic Carry Circuit – C3 (1)
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Dynamic Carry Circuit – C3 (2) 
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Dynamic Carry Circuit – C3 (3) 
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