
Young Won Lim
06/09/2012

SystemC – Events (08A)

SystemC

Young Won Lim
06/09/2012

 Copyright (c) 2012 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

mailto:youngwlim@hotmail.com

Events (08A) 3 Young Won Lim
06/09/2012

Based on the following original work

[1] Aleksandar Milenkovic, 2002
CPE 626 The SystemC Language – VHDL, Verilog Designer’s Guide
http://www.ece.uah.edu/~milenka/ce626-02S/lectures/cpe626-SystemC-L2.ppt

[2] Alexander de Graaf, EEMCS/ME/CAS, 2010
SystemC: an overview ET 4351
ens.ewi.tudelft.nl/Education/courses/et4351/SystemC-2010v1.pdf

[3] Joachim Gerlach, 2001
System-on-Chip Design with Systent of Computer Engineering
http://www2.cs.uni-paderborn.de/cs/ag-hardt/Forschung/Data/SystemC-Tutorial.pdf

[4] Martino Ruggiero, 2008
SystemC
polimage.polito.it/~lavagno/codes/SystemC_Lezione.pdf

[5] Deepak Kumar Tal, 1998-2012
SystemC Tutorial
http://www.asic-world.com/systemc/index.html

Events (08A) 4 Young Won Lim
06/09/2012

Event

 Events are occurrence of signal values and changes.

• Events are meant to trigger processes of modules.

• An event has no duration or value.

It can be used for
• static sensitivity of processes, or
• dynamic sensitivity of processes

Events (08A) 5 Young Won Lim
06/09/2012

Event Trigger

Triggering events: event.notify()

• Events occur explicitly by calling .notify() method
• When an event notification is scheduled,

the previous outstanding scheduled event is canceled

Canceling events: event.cancel()
Events can be explicitly canceled by calling .cancel() method

Events (08A) 6 Young Won Lim
06/09/2012

sc_event Queue

sc_event queue
• sc_event_queue lets a single event

be scheduled repeatedly even for the same time
• when events are scheduled for the same time,

each happens in a different delta cycle
• sc_event_queue objects do not support immediate notification
• .cancel() is replaced with .cancel_all()

Events (08A) 7 Young Won Lim
06/09/2012

Sensitivity

The sensitivity of a process instance is
the set of events and time-outs

that can potentially cause the process to be resumed or triggered.

The static sensitivity of an unspawned process instance is
fixed during elaboration.

The static sensitivity of a spawned process instance is
fixed when the function sc_spawn is called.

The dynamic sensitivity of a process instance may
vary over time under the control of the process itself.

A process instance is said to be sensitive to an event
if the event has been added
to the static sensitivity or dynamic sensitivity of the process instance.

A time-out occurs when a given time interval has elapsed.

Events (08A) 8 Young Won Lim
06/09/2012

Static Sensitivity (1)

Data member sensitive of class sc_module can be used
to create the static sensitivity of an unspawned process instance
using operator<< of class sc_sensitive. (the only way)

However, static sensitivity may be enabled or disabled
By calling function next_trigger() (→ sc_method) or
By calling function wait() (→ sc_thread).

With no argument

Events (08A) 9 Young Won Lim
06/09/2012

Static Sensitivity (2)

SC_MODULE(modA) {
 sc_event ev1, ev2;

SC_CTOR(modA) {

SC_THREAD(proc1);
sensitive << ev1 << ev2;

}

void proc1();
}

void modA::proc1() {

 // enable static sensitivity
wait();

}

SC_MODULE(modB) {
 sc_event ev1, ev2;

SC_CTOR(modB) {

SC_METHOD(proc2);
sensitive << ev1 << ev2;

}

void proc2();
}

void modB::proc2() {

 // enable static sensitivity
next_trigger();

}

ev1.notify(…);

ev2.notify(…);

Events (08A) 10 Young Won Lim
06/09/2012

Dynamic Sensitivity

SC_MODULE(modA) {
 sc_event ev1, ev2;

SC_CTOR(modA) {

SC_THREAD(proc1);
sensitive << ev1 << ev2;
// no need sensitive

}

void proc1();
}
void modA::proc1() {

 // enable static sensitivity
wait(ev1 | ev2);

}

SC_MODULE(modB) {
 sc_event ev1, ev2;

SC_CTOR(modB) {

SC_METHOD(proc2);
sensitive << ev1 << ev2;
// no need sensitive

}

void proc2();
}

void modB::proc2() {

 // enable static sensitivity
next_trigger(ev1 | ev2);

}

ev1.notify(…);

ev2.notify(…);

Events (08A) 11 Young Won Lim
06/09/2012

Dynamic Sensitivity – SC_THREAD (1)

SC_THREAD processes rely on wait method to suspend their execution

When the suspended process is reactivated,
it resumes execution at the statement after wait

Resumed when the kernel causes the process to continue execution,
starting with the statement immediately following the most recent call to wait.

When resumed, the process executes
until it reaches the next call to function wait.
Then, the process is suspended once again.

Events (08A) 12 Young Won Lim
06/09/2012

Dynamic Sensitivity – SC_THREAD (2)

wait(time);

wait(event);

wait(event1 | event2 | ...);

wait(event1 & event2 & ...);

wait(timeout, event);

wait(timeout, event1 | event2 | ...);

wait(timeout, event1 & event2 & ...);

Events (08A) 13 Young Won Lim
06/09/2012

Dynamic Sensitivity – SC_METHOD (1)

A method process instance
may have static sensitivity.

A method process, and only a method process,
May call the function next_trigger to create dynamic sensitivity.

next_trigger
does not suspend the process
temporarily sets a sensitivity list only for next time the process executes again
may be called repeatedly, overriding the previous calls

Without a next_trigger or a static sensitivity,
such process will never be executed again

Events (08A) 14 Young Won Lim
06/09/2012

Dynamic Sensitivity – SC_METHOD (2)

next_trigger(time);

next_trigger(event);

next_trigger(event1 | event2 | ...);

next_trigger(event1 & event2 & ...);

next_trigger(timeout, event);

next_trigger(timeout, event1 | event2 | ...);

next_trigger(timeout, event1 & event2 & ...);

Young Won Lim
06/09/2012

References

[1] Aleksandar Milenkovic, 2002
CPE 626 The SystemC Language – VHDL, Verilog Designer’s Guide
http://www.ece.uah.edu/~milenka/ce626-02S/lectures/cpe626-SystemC-L2.ppt

[2] Alexander de Graaf, EEMCS/ME/CAS, 2010
SystemC: an overview ET 4351
ens.ewi.tudelft.nl/Education/courses/et4351/SystemC-2010v1.pdf

[3] Joachim Gerlach, 2001
System-on-Chip Design with Systent of Computer Engineering
http://www2.cs.uni-paderborn.de/cs/ag-hardt/Forschung/Data/SystemC-Tutorial.pdf

[4] Martino Ruggiero, 2008
SystemC
polimage.polito.it/~lavagno/codes/SystemC_Lezione.pdf

[5] Deepak Kumar Tal, 1998-2012
SystemC Tutorial
http://www.asic-world.com/systemc/index.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

