Distribution Functions

Young W Lim

April 28, 2020

æ

- ● ● ●

Copyright (c) 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

(4 同) (ヨ) (ヨ)

Based on Probability, Random Variables and Random Signal Principles, P.Z. Peebles, Jr. and B. Shi

Young W Lim Distribution Functions

æ

æ

₽ ► < E

Cumulative Distribution Function

Definition

 $F_X(\mathbf{x}) = P\{X \leq \mathbf{x}\}$

- $F_X(x)$: a cumulative distribution function of x
- x : any real number ($-\infty < x < +\infty$)
- $P\{X \le x\}$ is the probability of the event $\{X \le x\}$

∄▶ ∢ ⊒▶

CDF of a continuous R.V.

Definition

$$F_X(\mathbf{x}) = \int_{-\infty}^{\mathbf{x}} f_X(t) dt$$

- $F_x(x)$: the cdf of a continuous random variable X
- the integral of its probability density function (pdf) $f_X(x)$

∄▶ ∢ ≣

The properties of a distribution function

•
$$F_X(x=-\infty)=0$$

•
$$F_X(x=+\infty)=1$$

•
$$0 \leq F_X(x) \leq 1$$

•
$$x_1 < x_2 \Longrightarrow F_X(x_1) \le F_X(x_2)$$

•
$$F_X(x_2) - F_X(x_1) = P\{x_1 < X \le x_2\}$$

•
$$F_X(x^+) = F_X(x)$$

$$P\{x_1 < X \le x_2\}$$

Theorem

$$P\{x_1 < X \le x_2\} = F_X(x_2) - F_X(x_1) \qquad (x_1 < x_2)$$

•
$$\{X \le x_1\} \cup \{x_1 < X \le x_2\} = \{X \le x_2\}$$

•
$$\{x_1 < X \le x_2\} = \{X \le x_2\} - \{X \le x_1\}$$

•
$$P\{x_1 < X \le x_2\} = P\{X \le x_2\} - P\{X \le x_1\}$$

イロト イヨト イヨト イヨト

2

CDF of a discrete R.V.

Definition

$$F_X(x) = \sum_{i=1}^N P\{X = x_i\} u(x - x_i) = \sum_{i=1}^N P(x_i) u(x - x_i)$$

•
$$P\{X = x_i\} = P(x_i)$$

• $u(x - x_i) = \begin{cases} 1 & x \ge x_i \\ 0 & x < x_i \end{cases}$
• $F_X(x) = \sum_{i=1}^N P(x_i) u(x - x_i)$

æ

47 ▶

<ロト < 回 > < 回 > < 回 > < 回 >

Ξ.