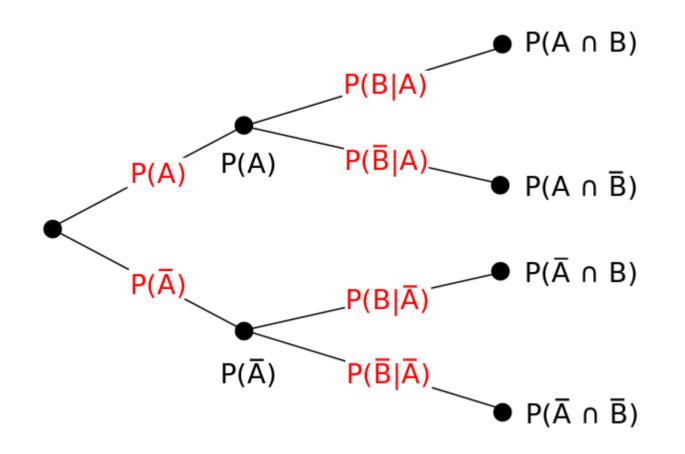
Copyright (c) 2017 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Intersection Probability



https://en.wikipedia.org/wiki/Conditional_probability

$$P(F|E) = \frac{P(E \cap F)}{P(E)}$$

$$P(E|F) = \frac{P(E \cap F)}{P(F)}$$

$$P(E|F) = P(E \cap F)$$

$$P(E \cap F) =$$

$$P(F|E)P(E) = P(E|F)P(F)$$

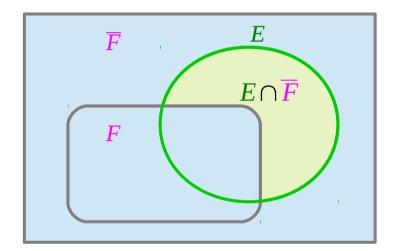
$$P(F|E) = \frac{P(E|F)P(F)}{P(E)}$$

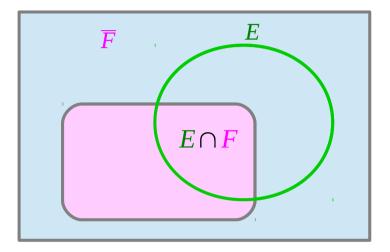
$$P(E|F) = \frac{P(F|E)P(E)}{P(F)}$$

4

Bayes' Rule (2)

$$E = (E \cap \overline{F}) \cup (E \cap F)$$





$$\frac{|E|}{|S|} = \frac{|E \cap \overline{F}|}{|F|} \cdot \frac{|F|}{|S|} + \frac{|E \cap F|}{|F|} \cdot \frac{|F|}{|S|}$$

$$P(E) = P(E|F)P(F) + P(E|\overline{F})P(\overline{F})$$

$$P(\mathbf{F}|E) = \frac{P(E|\mathbf{F})P(\mathbf{F})}{P(E)}$$

$$P(E) = P(E|F)P(F) + P(E|\overline{F})P(\overline{F})$$

$$P(F|E) = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|\overline{F})P(\overline{F})}$$

A Priori and a Posteriori

Two types of knowledge, justification, or arguments

A Priori - "from the earlier"

independent of experience

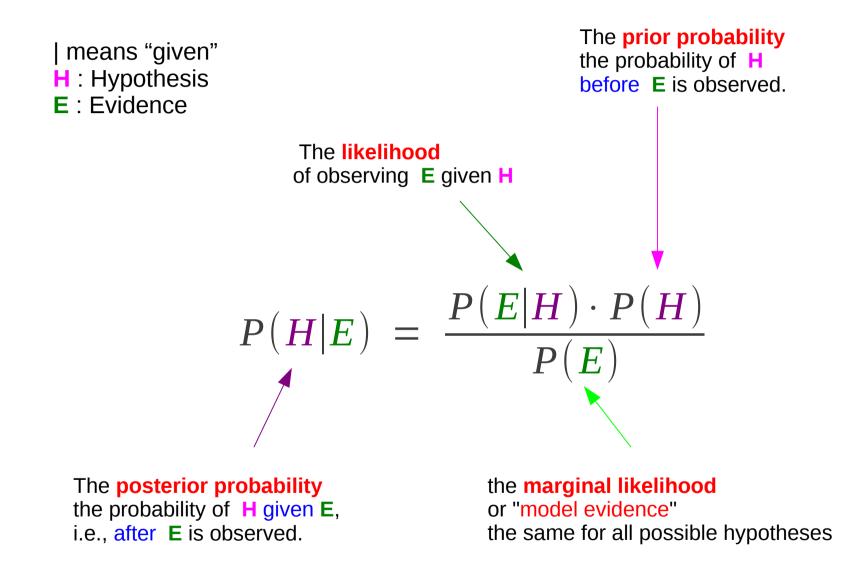
"All bachelors are unmarried"

A Posteriori - "from the later"

Dependent on experience or empirical evidence

"Some bachelors are happy"

Bayes' Rule (1)



Bayes' Rule (2)

$$P(H|E) = \frac{P(E|H) \cdot P(H)}{P(E)}$$

P(H), the prior probability –

the probability of **H** before **E** is observed.

This indicates one's *preconceived beliefs* about how likely different hypotheses are, absent evidence regarding the instance under study.

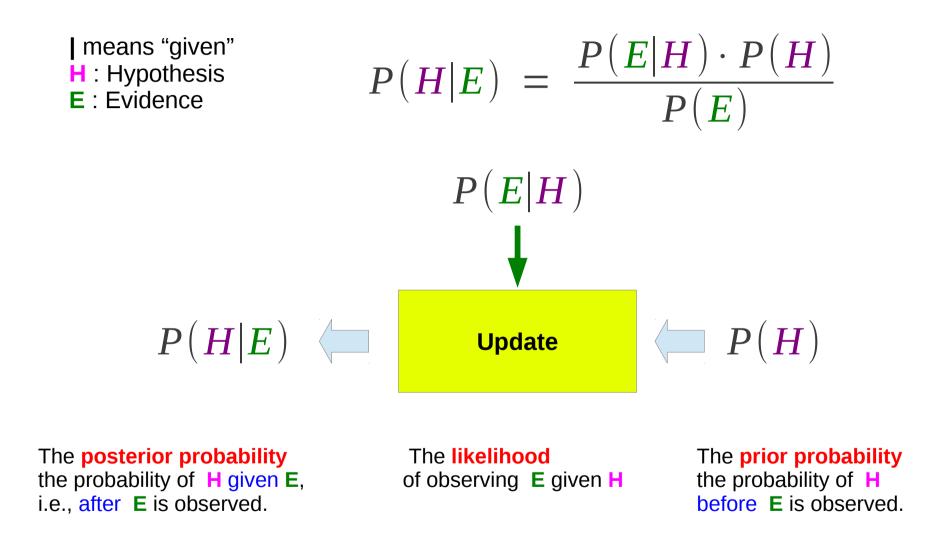
P(H|E), the posterior probability –

the probability of **H** given **E**, i.e., after **E** is observed. the probability of a hypothesis given the observed evidence

P(E|H), the probability of observing **E** given **H**, is also known as the **likelihood**. It indicates the **compatibility** of the evidence with the given hypothesis.

P(E), the **marginal likelihood** or "model evidence". This factor is the **same** for all possible hypotheses being considered. This means that this factor does not enter into determining the relative probabilities of different hypotheses.

Bayes' Rule (3)



If the Evidence doesn't match up with a Hypothesis, one should reject the Hypothesis. But if a Hypothesis is extremely unlikely a priori, one should also reject it, even if the Evidence does appear to match up.

Three Hypotheses about the nature of a newborn baby of a friend, including:

- H1: the baby is a brown-haired boy
- H2: the baby is a blond-haired girl.
- H3: the baby is a dog.

Consider two scenarios:

I'm presented with Evidence in the form of a picture of a blond-haired baby girl. I find this Evidence supports H2 and opposes H1 and H3.

I'm presented with Evidence in the form of a picture of a baby dog.

I don't find this Evidence supports H3,

since my prior belief in this Hypothesis (that a human can give birth to a dog) is extremely small.

Bayes' rule

a principled way of combining new Evidence with prior beliefs, through the application of Bayes' rule. can be applied iteratively: after observing some Evidence, the resulting posterior probability can then be treated as a prior probability, and a new posterior probability computed from new Evidence. Bayesian updating.

 $P(E|H) \ll P(H) \ll$

Posterior Probability Example (1)

Suppose there are two full bowls of cookies. **Bowl #1** has 10 <u>chocolate</u> chip and 30 <u>plain</u> cookies, while **bowl #2** has 20 of each.

When **picking a bowl** at random, and then **picking a cookie** at random. No reason to treat one bowl differently from another, likewise for the cookies. The drawn cookie turns out to be a <u>plain one</u>. How probable is it from <u>bowl #1</u>?

more than a half, since there are more plain cookies in bowl #1.

The precise answer

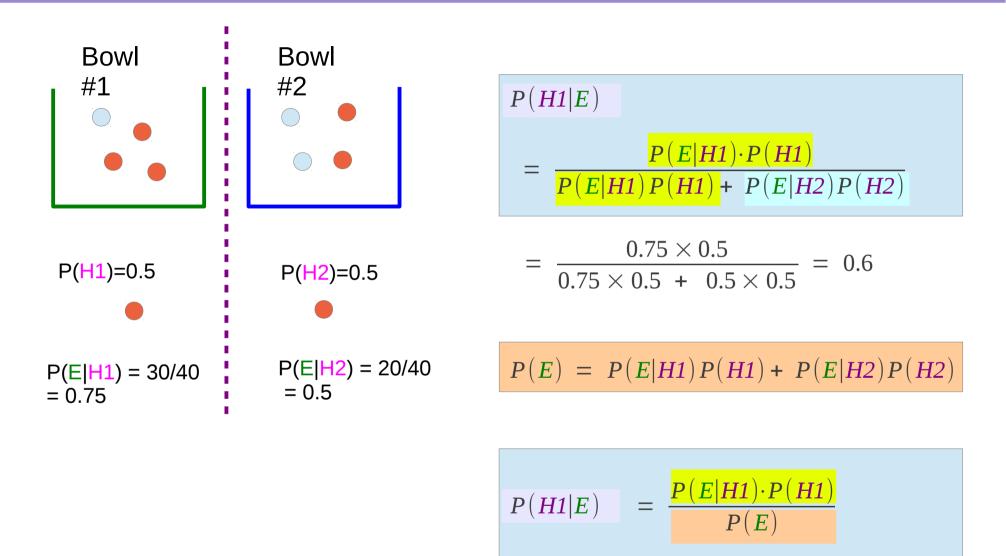
Let H1 correspond to bowl #1, and H2 to bowl #2. P(H1)=P(H2)=0.5.

The event E is the observation of a plain cookie. From the contents of the bowls, P(E|H1) = 30/40 = 0.75 and P(E|H2) = 20/40 = 0.5.

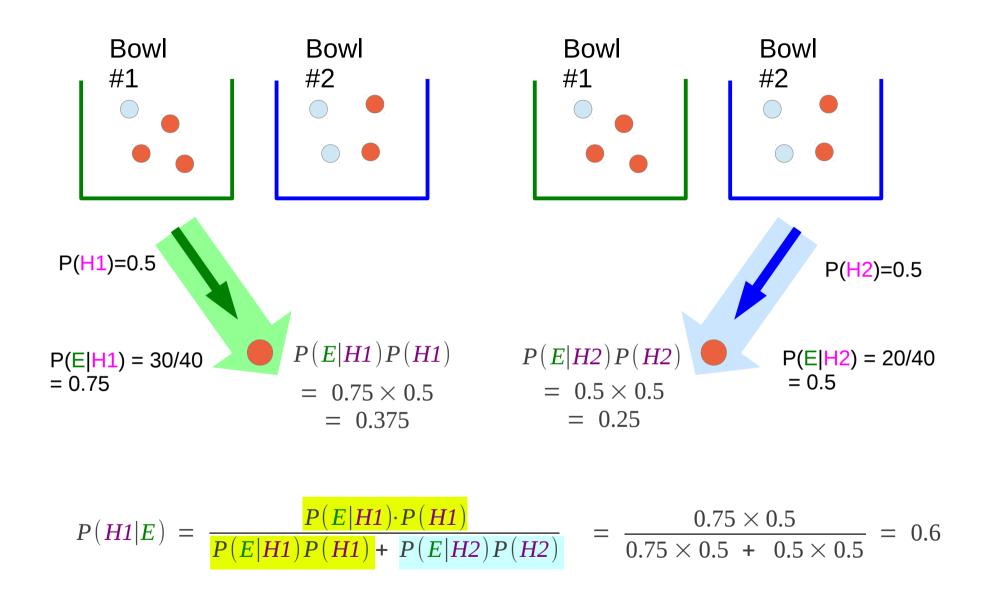
Bayes' formula then yields

$$P(H1|E) = \frac{P(E|H1) \cdot P(H1)}{P(E|H1)P(H1) + P(E|H2)P(H2)} = \frac{0.75 \times 0.5}{0.75 \times 0.5 + 0.5 \times 0.5} = 0.6$$

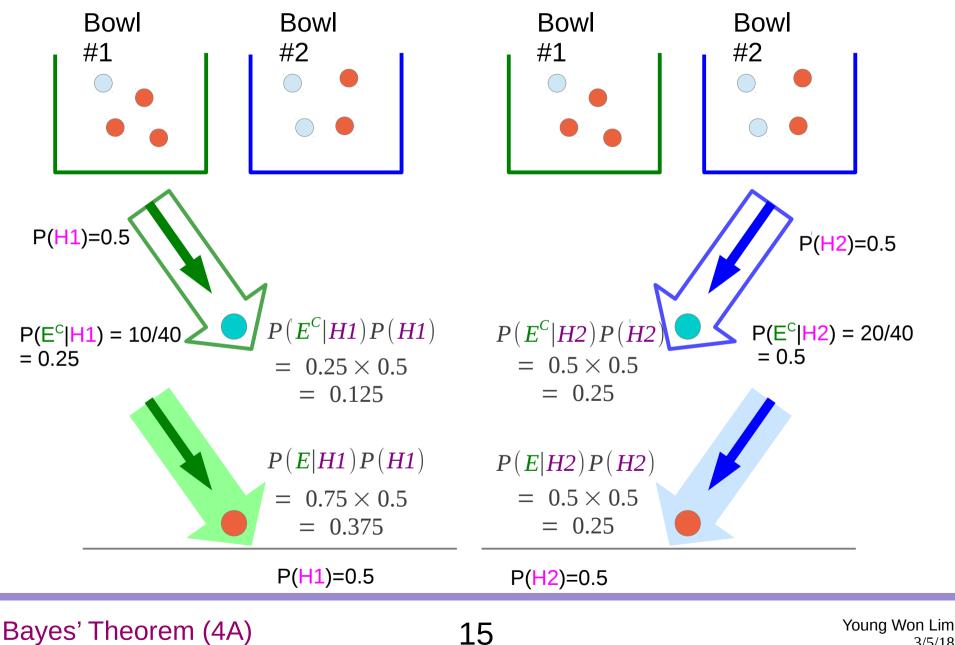
Posterior Probability Example (2)



Posterior Probability Example (3)



Posterior Probability Example (4)



3/5/18

References

- [1] http://en.wikipedia.org/
- [2] ttps://en.wikiversity.org/wiki/Discrete_Mathematics_in_plain_view
- [3] https://en.wikiversity.org/wiki/Understanding_Information_Theory