Probability Rules (3A)

Copyright (c) 2017 - 2018 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".
Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Independent Events

If two events, A and B are independent then the joint probability is

$$P(A \text{ and } B) = P(A \cap B) = P(A)P(B),$$

for example, if two coins are flipped the chance of both being heads is $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$.

Mutually Exclusive Events

If either event A or event B occurs on a single performance of an experiment this is called the union of the events A and B denoted as $P(A \cup B)$. If two events are mutually exclusive then the probability of either occurring is

$$P(A \text{ or } B) = P(A \cup B) = P(A) + P(B).$$

For example, the chance of rolling a 1 or 2 on a six-sided die is

$$P(1 \text{ or } 2) = P(1) + P(2) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}.$$

Not Mutually Exclusive Events

If the events are not mutually exclusive then

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B).$$

For example, when drawing a single card at random from a regular deck of cards, the chance of getting a heart or a face card (J,Q,K) (or one that is both) is $\frac{13}{52} + \frac{12}{52} - \frac{3}{52} = \frac{11}{26}$, because of the 52 cards of a deck 13 are hearts, 12 are face cards, and 3 are both: here the possibilities included in the "3 that are both" are included in each of the "13 hearts" and the "12 face cards" but should only be counted once.

Conditional Proabability

Conditional probability is the probability of some event A, given the occurrence of some other event B. Conditional probability is written $P(A \mid B)$, and is read "the probability of A, given B". It is defined by^[31]

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}.$$

If P(B)=0 then $P(A\mid B)$ is formally undefined by this expression. However, it is possible to define a conditional probability for some zero-probability events using a σ -algebra of such events (such as those arising from a continuous random variable). [citation needed]

Conditional Probability Examples

For example, in a bag of 2 red balls and 2 blue balls (4 balls in total), the probability of taking a red ball is 1/2; however, when taking a second ball, the probability of it being either a red ball or a blue ball depends on the ball previously taken, such as, if a red ball was taken, the probability of picking a red ball again would be 1/3 since only 1 red and 2 blue balls would have been remaining.

Inverse Proabability

In probability theory and applications, **Bayes' rule** relates the odds of event A_1 to event A_2 , before (prior to) and after (posterior to) conditioning on another event B. The odds on A_1 to event A_2 is simply the ratio of the probabilities of the two events. When arbitrarily many events A are of interest, not just two, the rule can be rephrased as **posterior is proportional** to prior times likelihood, $P(A|B) \propto P(A)P(B|A)$ where the proportionality symbol means that the left hand side is proportional to (i.e., equals a constant times) the right hand side as A varies, for fixed or given B (Lee, 2012; Bertsch McGrayne, 2012). In this form it goes back to Laplace (1774) and to Cournot (1843); see Fienberg (2005). See Inverse probability and Bayes' rule.

Probability Rules Summary

Event	Probability
Α	$P(A) \in [0,1]$
not A	$P(A^\complement) = 1 - P(A)$
A or B	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $P(A \cup B) = P(A) + P(B)$ if A and B are mutually exclusive
A and B	$P(A \cap B) = P(A B)P(B) = P(B A)P(A)$ $P(A \cap B) = P(A)P(B)$ if A and B are independent
A given B	$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B A)P(A)}{P(B)}$

Counting tails only

Young Won Lim

3/5/18

References

- [1] http://en.wikipedia.org/
- [2] https://en.wikiversity.org/wiki/Discrete_Mathematics_in_plain_view