
Young Won Lim
04/15/2014

●

●

CORDIC Prolog Implementation  (1A)



Young Won Lim
04/15/2014

 Copyright (c)  2014  Young W. Lim.

  Permission is granted to copy, distribute and/or modify this document  under the terms of the GNU Free Documentation License, 
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no 
Back-Cover Texts.  A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

mailto:youngwlim@hotmail.com


2A Background 3 Young Won Lim
04/15/2014

Background

M. Huntbach, http://www.eecs.qmul.ac.uk/~mmh/AINotes/AINotes3.pdf



2A Background 4 Young Won Lim
04/15/2014

Standard Order of Terms

Comparison and unification of arbitrary terms. Terms are ordered in the so-called 
``standard order''. This order is defined as follows:

    Variables < Numbers < Strings < Atoms < Compound Terms
    Variables are sorted by address. Attaching attributes (see section 7.1) does not 
affect the ordering.
    Numbers are compared by value. Mixed integer/float are compared as floats. If 
the comparison is equal, the float is considered the smaller value. If the Prolog flag 
iso is defined, all floating point numbers precede all integers.
    Strings are compared alphabetically.
    Atoms are compared alphabetically.
    Compound terms are first checked on their arity, then on their functor name 
(alphabetically) and finally recursively on their arguments, leftmost argument first.



2A Background 5 Young Won Lim
04/15/2014

Standard Order of Terms

@Term1 == @Term2
    True if Term1 is equivalent to Term2. A variable is only identical to a sharing 
variable.
@Term1 \== @Term2
    Equivalent to \+Term1 == Term2.
@Term1 @< @Term2
    True if Term1 is before Term2 in the standard order of terms.
@Term1 @=< @Term2
    True if both terms are equal (==/2) or Term1 is before Term2 in the standard 
order of terms.
@Term1 @> @Term2
    True if Term1 is after Term2 in the standard order of terms.
@Term1 @>= @Term2
    True if both terms are equal (==/2) or Term1 is after Term2 in the standard 
order of terms.
compare(?Order, @Term1, @Term2)
    Determine or test the Order between two terms in the standard order of terms. 
Order is one of <, > or =, with the obvious meaning.



2A Background 6 Young Won Lim
04/15/2014

Insert tree 

insert(N,empty, tree(empty,N,empty)).

insert(N, tree(Left,M,Right), tree(NewLeft,M,Right)) :-

N@=<M, !, insert(N,Left,NewLeft).

insert(N,tree(Left,M,Right), tree(Left,M,NewRight)) :-

insert(N,Right,NewRight).

tree(L,N,R)
the left branch is L 
the right branch is R
the store data N 



2A Background 7 Young Won Lim
04/15/2014

Delete tree

delete(N, tree(Left,M,Right), tree(NewLeft,M,Right)) :-

N@=<M, !, delete(N,Left,NewLeft).

delete(N,tree(Left,M,Right), tree(Left,M,NewRight)) :-

delete(N,Right,NewRight).



2A Background 8 Young Won Lim
04/15/2014

delete_root

delete_root(Left,empty,Left) :- !.

delete_root(empty,Right,Right) :- !.

delete_root(Left,Right,tree(NewLeft,N,Right)) :-



2A Background 9 Young Won Lim
04/15/2014

Remove_rightmost

remove_rightmost(Left,NewLeft,N).

remove_rightmost(tree(Left,N,empty),Left,N) :- !.

remove_rightmost(tree(Left,N,Right),tree(Left,N,NewRight),M) :-

remove_rightmost(Right,NewRight,M).



2A Background 10 Young Won Lim
04/15/2014

Build, flatten, append

build([],empty).

build([H|T],Tree) :- build(T,Tree1), insert(H,Tree1,Tree).

flatten(empty,[]).

flatten(tree(Left,N,Right),L) :-

flatten(Left,FlatLeft),

flatten(Right,FlatRight),

append(FlatLeft,[N|FlatRight],L).

append([],L,L).

append([H|T],L,[H|A]) :- append(T,L,A).



2A Background 11 Young Won Lim
04/15/2014

Binary Tree in Prolog

insert(N,empty,tree(empty,N,empty)).
insert(N,tree(Left,M,Right),tree(NewLeft,M,Right)) :-
N@=<M, !, insert(N,Left,NewLeft).
insert(N,tree(Left,M,Right),tree(Left,M,NewRight)) :-
insert(N,Right,NewRight).
delete(N,tree(Left,M,Right),T) :-
N==M, !, delete_root(Left,Right,T).
delete(N,tree(Left,M,Right),tree(NewLeft,M,Right)) :-
N@=<M, !, delete(N,Left,NewLeft).
delete(N,tree(Left,M,Right),tree(Left,M,NewRight)) :-
delete(N,Right,NewRight).
delete_root(Left,empty,Left) :- !.
delete_root(empty,Right,Right) :- !.
delete_root(Left,Right,tree(NewLeft,N,Right)) :-
remove_rightmost(Left,NewLeft,N).
remove_rightmost(tree(Left,N,empty),Left,N) :- !.
remove_rightmost(tree(Left,N,Right),tree(Left,N,NewRight),M) :-
remove_rightmost(Right,NewRight,M).
build([],empty).
build([H|T],Tree) :- build(T,Tree1), insert(H,Tree1,Tree).
flatten(empty,[]).
flatten(tree(Left,N,Right),L) :-
flatten(Left,FlatLeft),
flatten(Right,FlatRight),
append(FlatLeft,[N|FlatRight],L).
append([],L,L).
append([H|T],L,[H|A]) :- append(T,L,A).



Young Won Lim
04/15/2014

References

[1] M. Huntbach, http://www.eecs.qmul.ac.uk/~mmh/AINotes/AINotes3.pdf


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

