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Background

M. Huntbach, http://www.eecs.qmul.ac.uk/~mmh/AINotes/AINotes3.pdf
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Standard Order of Terms

Comparison and unification of arbitrary terms. Terms are ordered in the so-called 
``standard order''. This order is defined as follows:

    Variables < Numbers < Strings < Atoms < Compound Terms
    Variables are sorted by address. Attaching attributes (see section 7.1) does not 
affect the ordering.
    Numbers are compared by value. Mixed integer/float are compared as floats. If 
the comparison is equal, the float is considered the smaller value. If the Prolog flag 
iso is defined, all floating point numbers precede all integers.
    Strings are compared alphabetically.
    Atoms are compared alphabetically.
    Compound terms are first checked on their arity, then on their functor name 
(alphabetically) and finally recursively on their arguments, leftmost argument first.
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Standard Order of Terms

@Term1 == @Term2
    True if Term1 is equivalent to Term2. A variable is only identical to a sharing 
variable.
@Term1 \== @Term2
    Equivalent to \+Term1 == Term2.
@Term1 @< @Term2
    True if Term1 is before Term2 in the standard order of terms.
@Term1 @=< @Term2
    True if both terms are equal (==/2) or Term1 is before Term2 in the standard 
order of terms.
@Term1 @> @Term2
    True if Term1 is after Term2 in the standard order of terms.
@Term1 @>= @Term2
    True if both terms are equal (==/2) or Term1 is after Term2 in the standard 
order of terms.
compare(?Order, @Term1, @Term2)
    Determine or test the Order between two terms in the standard order of terms. 
Order is one of <, > or =, with the obvious meaning.



2A Background 6 Young Won Lim
04/15/2014

Insert tree 

insert(N,empty, tree(empty,N,empty)).

insert(N, tree(Left,M,Right), tree(NewLeft,M,Right)) :-

N@=<M, !, insert(N,Left,NewLeft).

insert(N,tree(Left,M,Right), tree(Left,M,NewRight)) :-

insert(N,Right,NewRight).

tree(L,N,R)
the left branch is L 
the right branch is R
the store data N 
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Delete tree

delete(N, tree(Left,M,Right), tree(NewLeft,M,Right)) :-

N@=<M, !, delete(N,Left,NewLeft).

delete(N,tree(Left,M,Right), tree(Left,M,NewRight)) :-

delete(N,Right,NewRight).
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delete_root

delete_root(Left,empty,Left) :- !.

delete_root(empty,Right,Right) :- !.

delete_root(Left,Right,tree(NewLeft,N,Right)) :-
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Remove_rightmost

remove_rightmost(Left,NewLeft,N).

remove_rightmost(tree(Left,N,empty),Left,N) :- !.

remove_rightmost(tree(Left,N,Right),tree(Left,N,NewRight),M) :-

remove_rightmost(Right,NewRight,M).
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Build, flatten, append

build([],empty).

build([H|T],Tree) :- build(T,Tree1), insert(H,Tree1,Tree).

flatten(empty,[]).

flatten(tree(Left,N,Right),L) :-

flatten(Left,FlatLeft),

flatten(Right,FlatRight),

append(FlatLeft,[N|FlatRight],L).

append([],L,L).

append([H|T],L,[H|A]) :- append(T,L,A).
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Binary Tree in Prolog

insert(N,empty,tree(empty,N,empty)).
insert(N,tree(Left,M,Right),tree(NewLeft,M,Right)) :-
N@=<M, !, insert(N,Left,NewLeft).
insert(N,tree(Left,M,Right),tree(Left,M,NewRight)) :-
insert(N,Right,NewRight).
delete(N,tree(Left,M,Right),T) :-
N==M, !, delete_root(Left,Right,T).
delete(N,tree(Left,M,Right),tree(NewLeft,M,Right)) :-
N@=<M, !, delete(N,Left,NewLeft).
delete(N,tree(Left,M,Right),tree(Left,M,NewRight)) :-
delete(N,Right,NewRight).
delete_root(Left,empty,Left) :- !.
delete_root(empty,Right,Right) :- !.
delete_root(Left,Right,tree(NewLeft,N,Right)) :-
remove_rightmost(Left,NewLeft,N).
remove_rightmost(tree(Left,N,empty),Left,N) :- !.
remove_rightmost(tree(Left,N,Right),tree(Left,N,NewRight),M) :-
remove_rightmost(Right,NewRight,M).
build([],empty).
build([H|T],Tree) :- build(T,Tree1), insert(H,Tree1,Tree).
flatten(empty,[]).
flatten(tree(Left,N,Right),L) :-
flatten(Left,FlatLeft),
flatten(Right,FlatRight),
append(FlatLeft,[N|FlatRight],L).
append([],L,L).
append([H|T],L,[H|A]) :- append(T,L,A).
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