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Predicate Calculus

Atoms

Numbers

Variables

Compound Terms

Constants

Simple Terms

functor(term
1
, …. , term

n
)

Predicates

(1) Every Prolog predicate : an atomic first-order logic formula 

(2) Commas separating subgoals : conjunctions in logic ( ^ ) 

(3) Prolog rules :  implications
     (body → head) : (antecedent → consequent)
     (head :- body) : change the order of head and body

(4) Queries : implications, 
     (body → ┴) : (antecedent → consequent  ┴)
     (?- body) 

(5) Every variable : universally quantified 
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Propositional Logic : 
no variable

First Order Logic : 
variable → unification



  

Rules

is_bigger(X, Y) :- bigger(X, Y).

∀x.∀y.(bigger(x, y) → is_bigger(x, y))

bodyhead

antecedent consequent

(1) Every Prolog predicate : an atomic first-order logic formula 

(2) Commas separating subgoals : conjunctions in logic ( ^ ) 

(3) Prolog rules :  implications
     (body → head) : (antecedent → consequent)
     (head :- body) : change the order of head and body

(4) Queries : implications, 
     (body → ┴) : (antecedent → consequent  ┴)
     (?- body) 

(5) Every variable : universally quantified 
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Queries

(1) Every Prolog predicate : an atomic first-order logic formula 

(2) Commas separating subgoals : conjunctions in logic ( ^ ) 

(3) Prolog rules :  implications
     (body → head) : (antecedent → consequent)
     (head :- body) : change the order of head and body

(4) Queries : implications, 
     (body → ┴) : (antecedent → consequent  ┴)
     (?- body) 

(5) Every variable : universally quantified 

?- is_bigger(elephant, X), is_bigger(X, donkey).

∀x.(is_bigger(elephant, x) ^ is_bigger(x, donkey) → ┴)

body

antecedent consequent

empty head

falsum : 
contradiction
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¬(A1 ∧ A2 ∧⋯∧An) ∨ B

(A1 ∧ A2 ∧⋯∧An)→B

¬A1 ∨ ¬A2 ∨⋯∨ ¬An ∨ ⊥

¬A1 ∨ ¬A2 ∨⋯∨ ¬An ∨ B

¬A1 ∨ ¬A2 ∨⋯∨ ¬An

B ≡ ⊥



  

First Order Logic Formulas
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First Order Logic Formulas

bigger(elephant, horse).
bigger(horse, donkey).
is_bigger(X, Y) :- bigger(X, Y).
is_bigger(X, Y) :- bigger(X, Z), is_bigger(Z, Y).

{ 
bigger(elephant, horse),
bigger(horse, donkey),
∀x.∀y.(bigger(x, y) → is_bigger(x, y)),
∀x.∀y.∀z.(bigger(x, z) ^ is_bigger(z, y) → is_bigger(x, y))
 }



  

Horn Formula 

¬(A1 ∧ A2 ∧ ⋯∧An) ∨ B

(A1 ∧ A2 ∧⋯∧An)→B

¬A1 ∨ ¬A2 ∨⋯∨ ¬An ∨ ⊥

¬A1 ∨ ¬A2 ∨⋯∨ ¬An ∨ B

¬A1 ∨ ¬A2 ∨⋯∨ ¬An

B ≡ ⊥

Young W. Lim
12/5/13

7Logic (3A)

¬A1 ∨ ¬A2 ∨⋯∨ ¬An : True when all A
i
 is false → contradict 

This results from the negation of the goal B
Therefore B follows from all A

i

 



  

Prolog Query
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A → ⊥

Putting the negation of the goal in a query into the set of formulas.

Answering  means showing that the set of formulas including the 
translated query is logically inconsistent.

⊥

iff P

⊥

A⊥

to show that A follows from P, 
show that adding the negation of A to P will lead to a contradiction.

 A follows from Pthe negation of A 

Adding the 
negation of A to P contradiction

¬A?- A

P , (A → ⊥ )



  

Resolution in the Propositional Logic
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¬ A1 ∨ ¬ A2 ∨ B1

¬ B1 ∨ ¬ B2

¬ A1 ∨ ¬ A2 ∨ ¬ B2

¬ A1 ∨ ¬ A2 ∨ T

F ∨ ¬ B2

¬ B2

¬ A1 ∨ ¬ A2 ∨ F

T ∨ ¬ B2

¬ A1 ∨ ¬ A2(B1 = T ) (B1 = F)

¬ A1 ∨ ¬ A2 ∨ B1

¬ B1 ∨ ¬ B2

¬ A1 ∨ ¬ A2 ∨ ¬ B2

A1 ∧ A2 → B1

B1 ∧ B2 → ⊥

A1 ∧ A2 ∧ B2 → ⊥

B1 :- A1, A2

?- B1, B2

?- A1, A2, B2

?- B1, B2 Find a fact or a rule head that 
matches the first subgoal b1

B1 :- A1, A2 Replace the the subgoal with the 
body of the found rule

?- A1, A2, B2

repeated until there are 
no more subgoals left in 
the query.

⊥an “empty disjunction”



  

Resolution in the First Order Logic
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Propositional Logic : no variable

First Order Logic : variable → unification

Unification : 

matching in Prolog

the variable instantiations for successful queries 
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Negation As Failure – (1)

PLANNER

if (not (goal p)), then (assert ¬p)

If the goal to prove p fails, then assert ¬p 

NAF literals of the form of not p can 
occur in the body of clauses

Can be used to derive other NAF literals

Prolog

p ← q ⋀  not r
q ← s 
q ← t 
t

NAF used to derive not p (p is assumed 
not to hold) from failure to derive p

not p can be different from the 
statement ¬p of the logical negation of 
p, depending on the completeness of 
the inference algorithm and thus also on 
the formal logic system    

not p : p is assumed not to hold

¬p : the logical negation of p

completeness of the inference algorithm

every tautology → theorem

every theorem → tautology

semantically complete

sound
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Negation As Failure – (2)

The semantics of NAF remained an open issue 
until Keith Clark [1978] showed that
it is correct with respect to the completion 
of the logic program, where, loosely speaking, 
"only" and ←  are interpreted as 
"if and only if", written as "iff" or "≡".

the completion of the four clauses above is

    p ≡ q ∧not r
    q ≡ s ∨ t
    t ≡ true
    r ≡ false
    s ≡ false

p ← q ∧not r
q ← s 
q ← t
t ← 

interpreted
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Negation As Failure – (3)

the completion of the four clauses above is

    p ≡ q ∧not r
    q ≡ s ∨ t
    t ≡ true
    r ≡ false
    s ≡ false

The NAF inference rule simulates 
reasoning explicitly with the completion, 
where both sides of the equivalence are negated 
and negation on the right-hand side is 
distributed down to atomic formulae. 

to show not p, NAF simulates 
reasoning with the equivalences

    not p ≡ not q ∨ r (≡ false)
    not q ≡ not s ∧  not t (≡ false)
    not t ≡ false
    not r ≡ true
    not s ≡ true

p ← q ∧not r
q ← s 
q ← t
t ← 

interpreted

not r

not s

p 

q 

The NAF derives 
t 

~q ∨ r ∨ p
~s ∨ q
~t ∨ q
t 
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Negation As Failure – (4)

In the non-propositional case, (predicate logic with variables)
the completion needs to be augmented with equality axioms, 
to formalise the assumption that 
individuals with distinct names are distinct. 
NAF simulates this by failure of unification.

 
For example, given only the two clauses

    p(a) ←
    p(b) ← t

NAF derives not p(c).

The completion of the program is

    p(X) ≡  X=a ∨ X=b

augmented with unique names axioms 
and domain closure axioms.

The completion semantics is closely related both to 
circumscription and to the closed world assumption.

equality axioms
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Negation As Failure – (5)

The concept of logical negation in Prolog is problematical, 
in the sense that the only method that Prolog can use 
to tell if a proposition is false is to try to prove it 
(from the facts and rules that it has been told about), 
and then if this attempt fails, 
it concludes that the proposition is false. 

This is referred to as negation as failure. 

An obvious problem is that 
Prolog may not have been told some critical fact or rule, 
so that it will not be able to prove the proposition. 

In such a case, the falsity of the proposition 
is only relative to the "mini-world-model" 
defined by the facts and rules known to the Prolog interpreter. 
This is sometimes referred to as the closed-world assumption.

A less obvious problem is that, 
depending again on the rules and facts 
known to the Prolog interpreter, it may take a very long time 
to determine that the proposition cannot be proven. 
In certain cases, it might "take" infinite time.

p ← q ∧not r
q ← s 
q ← t
t ← 

interpreted

    p ≡ q ∧not r
    q ≡ s ∨ t
    t ≡ true
    r ≡ false
    s ≡ false

Young W. Lim
12/5/13

15Logic (3A)



12/05/13  16

Negation As Failure – (6)

Because of the problems of negation-as-failure, 
negation in Prolog is represented in modern Prolog interpreters 
using the symbol \+, which is supposed to be 
a mnemonic for not provable 
with the \ standing for not and the + for provable. 
In practice, current Prolog interpreters 
tend to support the older operator not as well, 
as it is present in lots of older Prolog code, 
which would break if not were not available.

Examples:

?- \+ (2 = 4).

true.

?- not(2 = 4).

true.
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Negation As Failure – (7)

Arithmetic comparison operators in Prolog 
each come equipped with a negation 
which does not have a "negation as failure" problem, 
because it is always possible to determine, 
for example, if two numbers are equal, 
though there may be approximation issues 
if the comparison is between fractional (floating-point) numbers. 
So it is probably best to use the arithmetic comparison operators 
if numeric quantities are being compared. 
Thus, a better way to do the comparisons shown above would be:

?- 2 =\= 4.

true.
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Negation As Failure Example 1

Right Associative operator

bachelor(P) :- male(P), not(married(P)).

male(henry).

male(tom).

married(tom).

?- bachelor(henry).
Yes

?-bachelor(tom).
No

?-bachelor(Who).
Who=henry;
No

?- not(married(Who)).
No.

For the variable binding Who=tom,
married(Who) succeeds
not(married(Who)) fails

Negative goals with variables 
cannot be expected to produce 
bindings of the variables 
for which the goals fails

The first three responses are correct and as 
expected. The answer to the fourth query might 
have been unexpected at first. But consider that 
the goal ?-not(married(Who)) fails because for 
the variable binding Who=tom, married(Who) 
succeeds, and so the negative goal fails. Thus, 
negative goals ?-not(g) with variables cannot be 
expected to produce bindings of the variables 
for which the goal g fails. 
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Negation As Failure Example 2

p(X) :- q(X), not(r(X)). 
r(X) :- w(X), not(s(X)). 
q(a). q(b). q(c). 
s(a). s(c). 
w(a). w(b). 

p(X)

q(X) not(r(X))

r(X)

w(X) not(s(X))

s(X)

p(a)

q(a) not(r(a))

r(a)

w(a) not(s(a))

s(a)

p(b)

q(b) not(r(b))

r(b)

w(b) not(s(b))

s(b)

p(c)

q(c) not(r(c))

r(c)

w(c) not(s(c))

s(c)

true true true

true true

true true
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