

Logic (3A)

Young W. Lim
12/5/13

 Copyright (c) 2013 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Predicate Calculus

Atoms

Numbers

Variables

Compound Terms

Constants

Simple Terms

functor(term
1
, …. , term

n
)

Predicates

(1) Every Prolog predicate : an atomic first-order logic formula

(2) Commas separating subgoals : conjunctions in logic (^)

(3) Prolog rules : implications
 (body → head) : (antecedent → consequent)
 (head :- body) : change the order of head and body

(4) Queries : implications,
 (body → ┴) : (antecedent → consequent ┴)
 (?- body)

(5) Every variable : universally quantified

Young W. Lim
12/5/13

3Logic (3A)

Propositional Logic :
no variable

First Order Logic :
variable → unification

Rules

is_bigger(X, Y) :- bigger(X, Y).

∀x.∀y.(bigger(x, y) → is_bigger(x, y))

bodyhead

antecedent consequent

(1) Every Prolog predicate : an atomic first-order logic formula

(2) Commas separating subgoals : conjunctions in logic (^)

(3) Prolog rules : implications
 (body → head) : (antecedent → consequent)
 (head :- body) : change the order of head and body

(4) Queries : implications,
 (body → ┴) : (antecedent → consequent ┴)
 (?- body)

(5) Every variable : universally quantified

Young W. Lim
12/5/13

4Logic (3A)

Queries

(1) Every Prolog predicate : an atomic first-order logic formula

(2) Commas separating subgoals : conjunctions in logic (^)

(3) Prolog rules : implications
 (body → head) : (antecedent → consequent)
 (head :- body) : change the order of head and body

(4) Queries : implications,
 (body → ┴) : (antecedent → consequent ┴)
 (?- body)

(5) Every variable : universally quantified

?- is_bigger(elephant, X), is_bigger(X, donkey).

∀x.(is_bigger(elephant, x) ^ is_bigger(x, donkey) → ┴)

body

antecedent consequent

empty head

falsum :
contradiction

Young W. Lim
12/5/13

5Logic (3A)

¬(A1 ∧ A2 ∧⋯∧An) ∨ B

(A1 ∧ A2 ∧⋯∧An)→B

¬A1 ∨ ¬A2 ∨⋯∨ ¬An ∨ ⊥

¬A1 ∨ ¬A2 ∨⋯∨ ¬An ∨ B

¬A1 ∨ ¬A2 ∨⋯∨ ¬An

B ≡ ⊥

First Order Logic Formulas

Young W. Lim
12/5/13

6Logic (3A)

First Order Logic Formulas

bigger(elephant, horse).
bigger(horse, donkey).
is_bigger(X, Y) :- bigger(X, Y).
is_bigger(X, Y) :- bigger(X, Z), is_bigger(Z, Y).

{
bigger(elephant, horse),
bigger(horse, donkey),
∀x.∀y.(bigger(x, y) → is_bigger(x, y)),
∀x.∀y.∀z.(bigger(x, z) ^ is_bigger(z, y) → is_bigger(x, y))
 }

Horn Formula

¬(A1 ∧ A2 ∧ ⋯∧An) ∨ B

(A1 ∧ A2 ∧⋯∧An)→B

¬A1 ∨ ¬A2 ∨⋯∨ ¬An ∨ ⊥

¬A1 ∨ ¬A2 ∨⋯∨ ¬An ∨ B

¬A1 ∨ ¬A2 ∨⋯∨ ¬An

B ≡ ⊥

Young W. Lim
12/5/13

7Logic (3A)

¬A1 ∨ ¬A2 ∨⋯∨ ¬An : True when all A
i
 is false → contradict

This results from the negation of the goal B
Therefore B follows from all A

i

Prolog Query

Young W. Lim
12/5/13

8Logic (3A)

A → ⊥

Putting the negation of the goal in a query into the set of formulas.

Answering means showing that the set of formulas including the
translated query is logically inconsistent.

⊥

iff P

⊥

A⊥

to show that A follows from P,
show that adding the negation of A to P will lead to a contradiction.

 A follows from Pthe negation of A

Adding the
negation of A to P contradiction

¬A?- A

P , (A → ⊥)

Resolution in the Propositional Logic

Young W. Lim
12/5/13

9Logic (3A)

¬ A1 ∨ ¬ A2 ∨ B1

¬ B1 ∨ ¬ B2

¬ A1 ∨ ¬ A2 ∨ ¬ B2

¬ A1 ∨ ¬ A2 ∨ T

F ∨ ¬ B2

¬ B2

¬ A1 ∨ ¬ A2 ∨ F

T ∨ ¬ B2

¬ A1 ∨ ¬ A2(B1 = T) (B1 = F)

¬ A1 ∨ ¬ A2 ∨ B1

¬ B1 ∨ ¬ B2

¬ A1 ∨ ¬ A2 ∨ ¬ B2

A1 ∧ A2 → B1

B1 ∧ B2 → ⊥

A1 ∧ A2 ∧ B2 → ⊥

B1 :- A1, A2

?- B1, B2

?- A1, A2, B2

?- B1, B2 Find a fact or a rule head that
matches the first subgoal b1

B1 :- A1, A2 Replace the the subgoal with the
body of the found rule

?- A1, A2, B2

repeated until there are
no more subgoals left in
the query.

⊥an “empty disjunction”

Resolution in the First Order Logic

Young W. Lim
12/5/13

10Logic (3A)

Propositional Logic : no variable

First Order Logic : variable → unification

Unification :

matching in Prolog

the variable instantiations for successful queries

12/05/13 11

Negation As Failure – (1)

PLANNER

if (not (goal p)), then (assert ¬p)

If the goal to prove p fails, then assert ¬p

NAF literals of the form of not p can
occur in the body of clauses

Can be used to derive other NAF literals

Prolog

p ← q ⋀ not r
q ← s
q ← t
t

NAF used to derive not p (p is assumed
not to hold) from failure to derive p

not p can be different from the
statement ¬p of the logical negation of
p, depending on the completeness of
the inference algorithm and thus also on
the formal logic system

not p : p is assumed not to hold

¬p : the logical negation of p

completeness of the inference algorithm

every tautology → theorem

every theorem → tautology

semantically complete

sound

Young W. Lim
12/5/13

11Logic (3A)

12/05/13 12

Negation As Failure – (2)

The semantics of NAF remained an open issue
until Keith Clark [1978] showed that
it is correct with respect to the completion
of the logic program, where, loosely speaking,
"only" and ← are interpreted as
"if and only if", written as "iff" or "≡".

the completion of the four clauses above is

 p ≡ q ∧not r
 q ≡ s ∨ t
 t ≡ true
 r ≡ false
 s ≡ false

p ← q ∧not r
q ← s
q ← t
t ←

interpreted

Young W. Lim
12/5/13

12Logic (3A)

12/05/13 13

Negation As Failure – (3)

the completion of the four clauses above is

 p ≡ q ∧not r
 q ≡ s ∨ t
 t ≡ true
 r ≡ false
 s ≡ false

The NAF inference rule simulates
reasoning explicitly with the completion,
where both sides of the equivalence are negated
and negation on the right-hand side is
distributed down to atomic formulae.

to show not p, NAF simulates
reasoning with the equivalences

 not p ≡ not q ∨ r (≡ false)
 not q ≡ not s ∧ not t (≡ false)
 not t ≡ false
 not r ≡ true
 not s ≡ true

p ← q ∧not r
q ← s
q ← t
t ←

interpreted

not r

not s

p

q

The NAF derives
t

~q ∨ r ∨ p
~s ∨ q
~t ∨ q
t

Young W. Lim
12/5/13

13Logic (3A)

12/05/13 14

Negation As Failure – (4)

In the non-propositional case, (predicate logic with variables)
the completion needs to be augmented with equality axioms,
to formalise the assumption that
individuals with distinct names are distinct.
NAF simulates this by failure of unification.

For example, given only the two clauses

 p(a) ←
 p(b) ← t

NAF derives not p(c).

The completion of the program is

 p(X) ≡ X=a ∨ X=b

augmented with unique names axioms
and domain closure axioms.

The completion semantics is closely related both to
circumscription and to the closed world assumption.

equality axioms

Young W. Lim
12/5/13

14Logic (3A)

12/05/13 15

Negation As Failure – (5)

The concept of logical negation in Prolog is problematical,
in the sense that the only method that Prolog can use
to tell if a proposition is false is to try to prove it
(from the facts and rules that it has been told about),
and then if this attempt fails,
it concludes that the proposition is false.

This is referred to as negation as failure.

An obvious problem is that
Prolog may not have been told some critical fact or rule,
so that it will not be able to prove the proposition.

In such a case, the falsity of the proposition
is only relative to the "mini-world-model"
defined by the facts and rules known to the Prolog interpreter.
This is sometimes referred to as the closed-world assumption.

A less obvious problem is that,
depending again on the rules and facts
known to the Prolog interpreter, it may take a very long time
to determine that the proposition cannot be proven.
In certain cases, it might "take" infinite time.

p ← q ∧not r
q ← s
q ← t
t ←

interpreted

 p ≡ q ∧not r
 q ≡ s ∨ t
 t ≡ true
 r ≡ false
 s ≡ false

Young W. Lim
12/5/13

15Logic (3A)

12/05/13 16

Negation As Failure – (6)

Because of the problems of negation-as-failure,
negation in Prolog is represented in modern Prolog interpreters
using the symbol \+, which is supposed to be
a mnemonic for not provable
with the \ standing for not and the + for provable.
In practice, current Prolog interpreters
tend to support the older operator not as well,
as it is present in lots of older Prolog code,
which would break if not were not available.

Examples:

?- \+ (2 = 4).

true.

?- not(2 = 4).

true.

Young W. Lim
12/5/13

16Logic (3A)

12/05/13 17

Negation As Failure – (7)

Arithmetic comparison operators in Prolog
each come equipped with a negation
which does not have a "negation as failure" problem,
because it is always possible to determine,
for example, if two numbers are equal,
though there may be approximation issues
if the comparison is between fractional (floating-point) numbers.
So it is probably best to use the arithmetic comparison operators
if numeric quantities are being compared.
Thus, a better way to do the comparisons shown above would be:

?- 2 =\= 4.

true.

Young W. Lim
12/5/13

17Logic (3A)

12/05/13 18

Negation As Failure Example 1

Right Associative operator

bachelor(P) :- male(P), not(married(P)).

male(henry).

male(tom).

married(tom).

?- bachelor(henry).
Yes

?-bachelor(tom).
No

?-bachelor(Who).
Who=henry;
No

?- not(married(Who)).
No.

For the variable binding Who=tom,
married(Who) succeeds
not(married(Who)) fails

Negative goals with variables
cannot be expected to produce
bindings of the variables
for which the goals fails

The first three responses are correct and as
expected. The answer to the fourth query might
have been unexpected at first. But consider that
the goal ?-not(married(Who)) fails because for
the variable binding Who=tom, married(Who)
succeeds, and so the negative goal fails. Thus,
negative goals ?-not(g) with variables cannot be
expected to produce bindings of the variables
for which the goal g fails.

Young W. Lim
12/5/13

18Logic (3A)

12/05/13 19

Negation As Failure Example 2

p(X) :- q(X), not(r(X)).
r(X) :- w(X), not(s(X)).
q(a). q(b). q(c).
s(a). s(c).
w(a). w(b).

p(X)

q(X) not(r(X))

r(X)

w(X) not(s(X))

s(X)

p(a)

q(a) not(r(a))

r(a)

w(a) not(s(a))

s(a)

p(b)

q(b) not(r(b))

r(b)

w(b) not(s(b))

s(b)

p(c)

q(c) not(r(c))

r(c)

w(c) not(s(c))

s(c)

true true true

true true

true true

Young W. Lim
12/5/13

19Logic (3A)

References

[1] en.wikipedia.org
[2] en.wiktionary.org
[3] U. Endriss, “Lecture Notes : Introduction to Prolog Programming”
[4] http://www.learnprolognow.org/ Learn Prolog Now!
[5] http://www.csupomona.edu/~jrfisher/www/prolog_tutorial
[6] www.cse.unsw.edu.au/~billw/cs9414/notes/prolog/intro.html
[7] www.cse.unsw.edu.au/~billw/dictionaries/prolog/negation.html

Young W. Lim
12/5/13

20Logic (3A)

http://www.learnprolognow.org/
http://www.csupomona.edu/~jrfisher/
http://www.cse.unsw.edu.au/~billw/cs9414/notes/prolog/intro.html

Young W. Lim
12/5/13

21Logic (3A)

