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Proposition

From Old French, from 
Latin prōpositiō (“a 
proposing, design, theme, 
case”).

The content of an assertion 
that may be taken as being 
true or false and is 
considered abstractly 
without reference to the 
linguistic sentence that 
constitutes the assertion.

In Aristotelian logic a proposition is 
a particular kind of sentence, 
one which affirms or denies a predicate of a subject. 

In formal logic a proposition is considered as 
objects of a formal language. 
A formal language begins with different types of symbols. 

Propositional logic includes only 
operators and propositional constants as symbols in its language. 

The propositions in this language are 
propositional constants (considered atomic propositions), 
and composite propositions, (recursive application of operators to propositions).

Predicate logic include variables, operators, predicate and function symbols, and quantifiers 
as symbols in their languages. The propositions in these logics are more complex. 



Resolution (14A) 4 Young Won Lim
8/15/14

Predicate

From Middle French 
predicate (French prédicat), 
from post-classical Late 
Latin praedicatum (“thing 
said of a subject”), a noun 
use of the neuter past 
participle of praedicare 
(“proclaim”), as Etymology 
2, below.
From Latin predicātus, 
perfect passive participle of 
praedicō, from prae + dicō 
(“declare, proclaim”), from 
dicō (“say, tell”).

(grammar) The part of the sentence (or clause) which states 
something about the subject or the object of the sentence. 

"The dog barked very loudly"
the subject is "the dog" 
the predicate is "barked very loudly".

(logic) A term of a statement, 
where the statement may be true or false depending on 
whether the thing referred to by the values of the statement's 
variables has the property signified by that (predicative) term.  
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Premise

From Middle English, from 
Old French premisse, from 
Medieval Latin premissa 
(“set before”) (premissa 
propositio (“the proposition 
set before”)), feminine past 
participle of Latin 
praemittere (“to send or put 
before”), from prae- 
(“before”) + mittere (“to 
send”).

A premise : an assumption that something is true. 

an argument requires 

a set of (at least) two declarative sentences ("propositions") 
known as the premises 

along with another declarative sentence ("proposition") 
known as the conclusion. 

two premises and one conclusion : 
the basic argument structure 

Because all men are mortal and Socrates is a man, 
Socrates is mortal.

2 premises
1 conclusion

3 propositions
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Valid Argument Forms (Propositional)

Modus ponens (MP)

    If A, then B
    A
    Therefore, B 

Modus tollens (MT)

    If A, then B
    Not B
    Therefore, not A 

Hypothetical syllogism (HS)

    If A, then B
    If B, then C
    Therefore, if A, then C 

Disjunctive syllogism (DS)

    A or B
    Not A
    Therefore, B 

Modus ponens 
(Latin) “the way that affirms by affirming"

Modus tollens
(Latin) "the way that denies by denying"

Syllogism
(Greek: συλλογισμός  syllogismos) – "conclusion," "inference"



Resolution (14A) 7 Young Won Lim
8/15/14

Modus Ponens

The Prolog resolution algorithm 
based on the modus ponens form of inference 

a general rule – the major premise and
a specific fact – the minor premise 

All men are mortal rule
Socrates is a man fact 
Socrates is mortal

a
b :- a
b

Facts a
Rules  a → b
Conclusion b

Facts man(’Socrates’).
Rules  mortal(X) :- man(X).
Conclusion mortal(’Socrates’).

modus ponendo ponens 
(Latin) “the way that affirms by affirming"; 
often abbreviated to MP or modus ponens

P implies Q; 
P is asserted to be true, 
so therefore Q must be true

one of the accepted mechanisms for the 
construction of deductive proofs 
that includes the "rule of definition" and the 
"rule of substitution"
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Syllogism (1) 

In its earliest form, defined by Aristotle, 
from the combination of 
a general statement (the major premise) and 
a specific statement (the minor premise), 
a conclusion is deduced. 

For example, knowing 
that all men are mortal (major premise) and 
that Socrates is a man (minor premise), 
we may validly conclude that Socrates is mortal. 

A syllogism (Greek: συλλογισμός – syllogismos – "conclusion," "inference") is

a kind of logical argument that applies deductive reasoning to arrive at a conclusion 
based on two or more propositions that are asserted or assumed to be true.

rule
fact

rule
fact
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Syllogism (2) 

A categorical syllogism consists of three parts:

    Major premise: All humans are mortal.
    Minor premise: All Greeks are humans.
    Conclusion: All Greeks are mortal.

Each part - a categorical proposition - two categorical terms

In Aristotle, each of the premises is in the form 
"All A are B" universal proposition
"Some A are B" particular proposition
"No A are B" universal proposition
"Some A are not B" particular proposition

Each of the premises has one term in common with the conclusion: 
this common term is called 
a major term in a major premise (the predicate of the conclusion)
a minor term in a minor premise  (the subject of the conclusion)

Mortal is the major term, 
Greeks is the minor term. 
Humans is the middle term

  

major term
minor term

(the predicate of the conclusion)
(the subject of the conclusion)
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Modus Ponens (revisited)

      a
b :- a
b

Facts            a
Rules                  a → b
Conclusion            b

minor term

major term
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Derivation

A reversed modus ponens is used in Prolog 

Prolog tries to prove that 
a query (b) is a consequence of 
the database content (a, a ⇒ b). 

Using the major premise, it goes from b to a, 
and using the minor premise, from a to true.

Such a sequence of goals is called a derivation. 

A derivation can be finite or infinite.

      a

b :- a

b

Facts a

Rules  a → b

Conclusion         b

      a
b :- a
b

b :- a

a true

Facts

Rules

Conclusion
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Horn Clause 

the resolvent of two Horn clauses is itself a Horn clause
the resolvent of a goal clause and a definite clause is a goal clause

These properties of Horn clauses can lead to greater efficiencies in proving a theorem 
(represented as the negation of a goal clause).

Propositional Horn clauses are also of interest in computational complexity, 
where the problem of finding truth value assignments 
to make a conjunction of propositional Horn clauses true 
is a P-complete problem (in fact solvable in linear time), sometimes called HORNSAT. 
(The unrestricted Boolean satisfiability problem is an NP-complete problem however.) 
Satisfiability of first-order Horn clauses is undecidable.

By iteratively applying the resolution rule, it is possible  
● to tell whether a propositional formula is satisfiable 
● to prove that a first-order formula is unsatisfiable; 

● this method may prove the satisfiability of a first-order formula, 
● but not always, as it is the case for all methods for first-order logic 
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Definite Clause 

clause : a disjunction of literals

Horn clause : a clause with at most one positive (unnegated) literal (0, 1) 

definite clause : a Horn clause with exactly one positive literal (1)
fact : a definite clause with no negative literals 

but with one positive literal only (1)
goal clause : a Horn clause without a positive literal (0) 

Dual-Horn clause : a clause with at most one negated literal

Disjunction form Implication form 
Definite clause ¬p  ¬q  ...  ¬t  ∨ ∨ ∨ ∨ u u ← p  q  ...  t ∧ ∧ ∧
Fact u u 
Goal clause ¬p  ¬q  ...  ¬t ∨ ∨ ∨ false ← p  q  ...  t ∧ ∧ ∧

● assume that u holds if p and q and ... and t all hold
● assume that u holds
● show that p and q and ... and t all hold
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Resolution 

Resolution is a rule of inference 
leading to a refutation theorem-proving technique 
for sentences in propositional logic and first-order logic. 

By iteratively applying the resolution rule, it is possible  
● to tell whether a propositional formula is satisfiable 
● to prove that a first-order formula is unsatisfiable; 

● this method may prove the satisfiability of a first-order formula, 
● but not always, as it is the case for all methods for first-order logic 

Resolvent : the clause produced by a resolution rule 

A simple example

a  b,    a  c 

b  c 

Suppose a is false. In order for the premise a  b to be true, b must be true. 
Suppose a is true. In order for the premise  a  c to be true, c must be true. 
Therefore regardless of falsehood or veracity of a, if both premises hold, 
then the conclusion b  c is true.
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Refutation

Refute
To prove (something) to be false or incorrect.
To deny the truth or correctness of (something).

Reductio ad absurdum 
Latin: "reduction to absurdity"; pl.: reductiones ad absurdum

also known as 
argumentum ad absurdum 
Latin: argument to absurdity

is a common form of argument which seeks to demonstrate that a statement is true 
by showing that a false, untenable, or absurd result follows from its denial, 
or in turn to demonstrate that a statement is false 
by showing that a false, untenable, or absurd result follows from its acceptance.
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SLD Resolution

The SLD (Selective Linear Definite clause) resolution
SLD stands for “Linear resolution” with a “Selection function” for “Definite clauses” 

“definite clauses” are just another name for Prolog clauses.

"L" stands for the fact that a resolution proof can be restricted 
to a linear sequence of clauses:

C
1
, C

2
, …  ,  C

i
 , C

i+1
,  … , C

l

where the "top clause" C
1
, is an input clause,

and every other clause C
i+1

, is a resolvent

one of whose parents is the previous clause C
i
  

The proof is a refutation 
if the last clause C

l
 , is the empty clause.

 
In SLD, all of the clauses in the sequence are goal clauses, 
and the other parent is an input clause in the given set of 
definite clauses S. 

In SL resolution, the other parent is either an input clause 
or an ancestor clause earlier in the sequence.

In both SL and SLD, "S" stands for 
the fact that the only literal resolved 
upon in any clause C

i
, is one that is 

uniquely selected by a selection rule 
or selection function. 

In SL resolution, the selected literal is 
restricted to one which has been 
most recently introduced into the 
clause. In the simplest case, such a 
last-in-first-out selection function can 
be specified by the order in which 
literals are written, as in Prolog. 

However, the selection function in 
SLD resolution is more general than 
in SL resolution and in Prolog. There 
is no restriction on the literal that can 
be selected.
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SLD vs SL Resolution (1)

In SLD, all of the clauses in the sequence are goal clauses, 
and the other parent is an input clause  in the given set of 
definite clauses S. 

In SL resolution, the other parent is either an input clause 
or an ancestor clause earlier in the sequence.

C

1

C

2

C

i

C
i+

1

C

l

… …

S: given a set of definite clauses 

http://www.doc.ic.ac.uk/~rak/papers/History.pd
f

Disjunction form Implication form 
Definite clause ¬p  ¬q  ...  ¬t  ∨ ∨ ∨ ∨ u u ← p  q  ...  t ∧ ∧ ∧
Fact u u 
Goal clause ¬p  ¬q  ...  ¬t ∨ ∨ ∨ false ← p  q  ...  t ∧ ∧ ∧

C

1

C

2

C

i

C
i+

1

C

l

… …

S: given a set of definite clauses 
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SLD vs SL Resolution (2)

http://www.doc.ic.ac.uk/~rak/papers/History.pd
f

Disjunction form Implication form 
Definite clause ¬p  ¬q  ...  ¬t  ∨ ∨ ∨ ∨ u u ← p  q  ...  t ∧ ∧ ∧
Fact u u 
Goal clause ¬p  ¬q  ...  ¬t ∨ ∨ ∨ false ← p  q  ...  t ∧ ∧ ∧

In both SL and SLD, "S" stands for 
the fact that the only literal resolved 
upon in any clause C

i
, is one that is 

uniquely selected by a selection rule 
or selection function. 

In SL resolution, the selected literal 
is restricted to one which has been 
most recently introduced into the 
clause. In the simplest case, such a 
last-in-first-out selection function can 
be specified by the order in which 
literals are written, as in Prolog. 

However, the selection function in 
SLD resolution is more general than 
in SL resolution and in Prolog. There 
is no restriction on the literal that can 
be selected.

G1, G2, ..., Gi, ..., Gm

H :- B1, ..., Bn

G1, G2, ..., B1, ..., Bn , ..., Gm

selection
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Satisfiability

A formula is satisfiable 
if it is possible to find an interpretation (model) 
that makes the formula true.

A formula is valid 
if all interpretations make the formula true. 

A formula is unsatisfiable 
if none of the interpretations make the formula 
true

A formula is invalid 
if some such interpretation makes the formula 
false. 

φ is valid if and only if ¬φ is unsatisfiable
it is not true that ¬φ is satisfiable. 

φ is satisfiable if and only if ¬φ is invalid.

A formula is satisfiable 
if it is possible to find an interpretation (model) 
that makes the formula true.

A formula is valid 
if all interpretations make the formula true. 

A formula is unsatisfiable 
if none of the interpretations make the formula 
true

A formula is invalid 
if some such interpretation makes the formula 
false. 

satisfiability is decidable 
for propositional formulae. 
satisfiability is an NP-complete problem

Satisfiability is undecidable and indeed it isn't 
even a semidecidable property of formulae in 
first-order logic (FOL).

This fact has to do with the undecidability of the 
validity problem for FOL. 

φ is valid if and only if ¬φ is unsatisfiable
it is not true that ¬φ is satisfiable. 

φ is satisfiable if and only if ¬φ is invalid.
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Logic Programming

(p  q  ...  t) → u ∧ ∧ ∧

to show u, show p and show q and ... and show t.

u ← (p  q  ...  t)∧ ∧ ∧ u :- p, q, ..., t.

∃X (p  q  ...  t)∧ ∧ ∧

∀X (false ← p  q  ...  t)∧ ∧ ∧ :- p, q, ..., t.

the resolution of a goal clause with a definite clause to produce a new goal clause 
is the basis of the SLD resolution inference rule
a definite clause behaves as a goal-reduction procedure

the negation of a problem to be solved as a goal clause. 
the problem of solving the existentially quantified conjunction of positive literals
is represented by negating the problem (denying that it has a solution)

Solving the problem amounts to deriving a contradiction, 
which is represented by the empty clause (or "false"). 
The solution of the problem is a substitution of terms for the variables in the goal clause, 
which can be extracted from the proof of contradiction. 

The Prolog notation is actually ambiguous, and the term “goal clause” is sometimes also used ambiguously. 
The variables in a goal clause can be read as universally or existentially quantified, 
and deriving “false” can be interpreted either as deriving a contradiction 
or as deriving a successful solution of the problem to be solved.



Resolution (14A) 21 Young Won Lim
8/15/14

Resolution Algorithm

Resolvent :  a conjunction of current goals to prove (initially Q)

The resolution algorithm 
● selects a goal from the resolvent 
● searches a clause in the database 
● replaces the goal with the body of the clause. 

whose head unifies with the goal. 

The resolution loop replaces successively goals of the resolvent
until they all reduce to true and the resolvent becomes empty.

a success with a possible instantiation of the query goal Q', 
the final substitution is the composition of all the MGUs 
involved in the resolution restricted to the variables of Q. 

a failure if no rule unifies with the goal. 

Refutation: This type of derivation, which terminates when the resolvent is empty
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A Resolution Algorithm

• Initialization

Initialize Resolvent to Q, the initial goal of the resolution algorithm.

Initialize the final substitution σ to {} 

Initialize failure to false

• Loop with Resolvent = G1, G2, ..., Gi, ..., Gm

while (Resolvent ≠ ∅) {

1. Select the goal Gi  ∈ Resolvent;

2. If Gi == true, delete it and continue;

3. Select the rule H :- B1, ..., Bn in the database 

such that Gi and H unify with the MGU θ. 

If there is no such a rule then set failure to true; break;

4. Replace Gi with B1, ..., Bn in Resolvent

% Resolvent = G1,...,Gi−1, B1,...,Bn, Gi+1,..., Gm

5. Apply θ to Resolvent and to Q;

6. Compose σ with θ to obtain the new current σ;   %the final substitution

}

G1, G2, ..., Gi, ..., Gm

H :- B1, ..., Bn

Most General Unifier

G1, G2, ..., B1, ..., Bn , ..., Gm
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Lists

Each goal in the resolvent (in the body of a rule) 
must be different from a variable. 

Otherwise, this goal must be instantiated 
to a nonvariable term before it is called. 

The call/1 built-in predicate then executes it as in the rule:

daughter(X, Y) :- mother(Y, X), G = female(X), call(G).

where call(G) solves the goal G just as if it were female(X). 

In fact, Prolog automatically inserts call/1 predicates 
when it finds that a goal is a variable. 
G is thus exactly equivalent to call(G), 
and the rule can be rewritten more concisely in:

daughter(X, Y) :- mother(Y, X), G = female(X), G.
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