
Resolution (14A)

Young W. Lim
8/15/14

Resolution (14A) 2

 Copyright (c) 2013 -2014 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice/OpenOffice.

based on the following document:
http://www.learnprolognow.org/ Learn Prolog Now!

mailto:youngwlim@hotmail.com
http://www.learnprolognow.org/

Resolution (14A) 3 Young Won Lim
8/15/14

Proposition

From Old French, from
Latin prōpositiō (“a
proposing, design, theme,
case”).

The content of an assertion
that may be taken as being
true or false and is
considered abstractly
without reference to the
linguistic sentence that
constitutes the assertion.

In Aristotelian logic a proposition is
a particular kind of sentence,
one which affirms or denies a predicate of a subject.

In formal logic a proposition is considered as
objects of a formal language.
A formal language begins with different types of symbols.

Propositional logic includes only
operators and propositional constants as symbols in its language.

The propositions in this language are
propositional constants (considered atomic propositions),
and composite propositions, (recursive application of operators to propositions).

Predicate logic include variables, operators, predicate and function symbols, and quantifiers
as symbols in their languages. The propositions in these logics are more complex.

Resolution (14A) 4 Young Won Lim
8/15/14

Predicate

From Middle French
predicate (French prédicat),
from post-classical Late
Latin praedicatum (“thing
said of a subject”), a noun
use of the neuter past
participle of praedicare
(“proclaim”), as Etymology
2, below.
From Latin predicātus,
perfect passive participle of
praedicō, from prae + dicō
(“declare, proclaim”), from
dicō (“say, tell”).

(grammar) The part of the sentence (or clause) which states
something about the subject or the object of the sentence.

"The dog barked very loudly"
the subject is "the dog"
the predicate is "barked very loudly".

(logic) A term of a statement,
where the statement may be true or false depending on
whether the thing referred to by the values of the statement's
variables has the property signified by that (predicative) term.  

Resolution (14A) 5 Young Won Lim
8/15/14

Premise

From Middle English, from
Old French premisse, from
Medieval Latin premissa
(“set before”) (premissa
propositio (“the proposition
set before”)), feminine past
participle of Latin
praemittere (“to send or put
before”), from prae-
(“before”) + mittere (“to
send”).

A premise : an assumption that something is true.

an argument requires

a set of (at least) two declarative sentences ("propositions")
known as the premises

along with another declarative sentence ("proposition")
known as the conclusion.

two premises and one conclusion :
the basic argument structure

Because all men are mortal and Socrates is a man,
Socrates is mortal.

2 premises
1 conclusion

3 propositions

Resolution (14A) 6 Young Won Lim
8/15/14

Valid Argument Forms (Propositional)

Modus ponens (MP)

 If A, then B
 A
 Therefore, B

Modus tollens (MT)

 If A, then B
 Not B
 Therefore, not A

Hypothetical syllogism (HS)

 If A, then B
 If B, then C
 Therefore, if A, then C

Disjunctive syllogism (DS)

 A or B
 Not A
 Therefore, B

Modus ponens
(Latin) “the way that affirms by affirming"

Modus tollens
(Latin) "the way that denies by denying"

Syllogism
(Greek: συλλογισμός syllogismos) – "conclusion," "inference"

Resolution (14A) 7 Young Won Lim
8/15/14

Modus Ponens

The Prolog resolution algorithm
based on the modus ponens form of inference

a general rule – the major premise and
a specific fact – the minor premise

All men are mortal rule
Socrates is a man fact
Socrates is mortal

a
b :- a
b

Facts a
Rules a → b
Conclusion b

Facts man(’Socrates’).
Rules mortal(X) :- man(X).
Conclusion mortal(’Socrates’).

modus ponendo ponens
(Latin) “the way that affirms by affirming";
often abbreviated to MP or modus ponens

P implies Q;
P is asserted to be true,
so therefore Q must be true

one of the accepted mechanisms for the
construction of deductive proofs
that includes the "rule of definition" and the
"rule of substitution"

Resolution (14A) 8 Young Won Lim
8/15/14

Syllogism (1)

In its earliest form, defined by Aristotle,
from the combination of
a general statement (the major premise) and
a specific statement (the minor premise),
a conclusion is deduced.

For example, knowing
that all men are mortal (major premise) and
that Socrates is a man (minor premise),
we may validly conclude that Socrates is mortal.

A syllogism (Greek: συλλογισμός – syllogismos – "conclusion," "inference") is

a kind of logical argument that applies deductive reasoning to arrive at a conclusion
based on two or more propositions that are asserted or assumed to be true.

rule
fact

rule
fact

Resolution (14A) 9 Young Won Lim
8/15/14

Syllogism (2)

A categorical syllogism consists of three parts:

 Major premise: All humans are mortal.
 Minor premise: All Greeks are humans.
 Conclusion: All Greeks are mortal.

Each part - a categorical proposition - two categorical terms

In Aristotle, each of the premises is in the form
"All A are B" universal proposition
"Some A are B" particular proposition
"No A are B" universal proposition
"Some A are not B" particular proposition

Each of the premises has one term in common with the conclusion:
this common term is called
a major term in a major premise (the predicate of the conclusion)
a minor term in a minor premise (the subject of the conclusion)

Mortal is the major term,
Greeks is the minor term.
Humans is the middle term

major term
minor term

(the predicate of the conclusion)
(the subject of the conclusion)

Resolution (14A) 10 Young Won Lim
8/15/14

Modus Ponens (revisited)

 a
b :- a
b

Facts a
Rules a → b
Conclusion b

minor term

major term

Resolution (14A) 11 Young Won Lim
8/15/14

Derivation

A reversed modus ponens is used in Prolog

Prolog tries to prove that
a query (b) is a consequence of
the database content (a, a ⇒ b).

Using the major premise, it goes from b to a,
and using the minor premise, from a to true.

Such a sequence of goals is called a derivation.

A derivation can be finite or infinite.

 a

b :- a

b

Facts a

Rules a → b

Conclusion b

 a
b :- a
b

b :- a

a true

Facts

Rules

Conclusion

Resolution (14A) 12 Young Won Lim
8/15/14

Horn Clause

the resolvent of two Horn clauses is itself a Horn clause
the resolvent of a goal clause and a definite clause is a goal clause

These properties of Horn clauses can lead to greater efficiencies in proving a theorem
(represented as the negation of a goal clause).

Propositional Horn clauses are also of interest in computational complexity,
where the problem of finding truth value assignments
to make a conjunction of propositional Horn clauses true
is a P-complete problem (in fact solvable in linear time), sometimes called HORNSAT.
(The unrestricted Boolean satisfiability problem is an NP-complete problem however.)
Satisfiability of first-order Horn clauses is undecidable.

By iteratively applying the resolution rule, it is possible
● to tell whether a propositional formula is satisfiable
● to prove that a first-order formula is unsatisfiable;

● this method may prove the satisfiability of a first-order formula,
● but not always, as it is the case for all methods for first-order logic

Resolution (14A) 13 Young Won Lim
8/15/14

Definite Clause

clause : a disjunction of literals

Horn clause : a clause with at most one positive (unnegated) literal (0, 1)

definite clause : a Horn clause with exactly one positive literal (1)
fact : a definite clause with no negative literals

but with one positive literal only (1)
goal clause : a Horn clause without a positive literal (0)

Dual-Horn clause : a clause with at most one negated literal

Disjunction form Implication form
Definite clause ¬p ¬q ... ¬t ∨ ∨ ∨ ∨ u u ← p q ... t ∧ ∧ ∧
Fact u u
Goal clause ¬p ¬q ... ¬t ∨ ∨ ∨ false ← p q ... t ∧ ∧ ∧

● assume that u holds if p and q and ... and t all hold
● assume that u holds
● show that p and q and ... and t all hold

Resolution (14A) 14 Young Won Lim
8/15/14

Resolution

Resolution is a rule of inference
leading to a refutation theorem-proving technique
for sentences in propositional logic and first-order logic.

By iteratively applying the resolution rule, it is possible
● to tell whether a propositional formula is satisfiable
● to prove that a first-order formula is unsatisfiable;

● this method may prove the satisfiability of a first-order formula,
● but not always, as it is the case for all methods for first-order logic

Resolvent : the clause produced by a resolution rule

A simple example

a b, a c

b c

Suppose a is false. In order for the premise a b to be true, b must be true.
Suppose a is true. In order for the premise a c to be true, c must be true.
Therefore regardless of falsehood or veracity of a, if both premises hold,
then the conclusion b c is true.

Resolution (14A) 15 Young Won Lim
8/15/14

Refutation

Refute
To prove (something) to be false or incorrect.
To deny the truth or correctness of (something).

Reductio ad absurdum
Latin: "reduction to absurdity"; pl.: reductiones ad absurdum

also known as
argumentum ad absurdum
Latin: argument to absurdity

is a common form of argument which seeks to demonstrate that a statement is true
by showing that a false, untenable, or absurd result follows from its denial,
or in turn to demonstrate that a statement is false
by showing that a false, untenable, or absurd result follows from its acceptance.

Resolution (14A) 16 Young Won Lim
8/15/14

SLD Resolution

The SLD (Selective Linear Definite clause) resolution
SLD stands for “Linear resolution” with a “Selection function” for “Definite clauses”

“definite clauses” are just another name for Prolog clauses.

"L" stands for the fact that a resolution proof can be restricted
to a linear sequence of clauses:

C
1
, C

2
, … , C

i
 , C

i+1
, … , C

l

where the "top clause" C
1
, is an input clause,

and every other clause C
i+1

, is a resolvent

one of whose parents is the previous clause C
i

The proof is a refutation
if the last clause C

l
 , is the empty clause.

In SLD, all of the clauses in the sequence are goal clauses,
and the other parent is an input clause in the given set of
definite clauses S.

In SL resolution, the other parent is either an input clause
or an ancestor clause earlier in the sequence.

In both SL and SLD, "S" stands for
the fact that the only literal resolved
upon in any clause C

i
, is one that is

uniquely selected by a selection rule
or selection function.

In SL resolution, the selected literal is
restricted to one which has been
most recently introduced into the
clause. In the simplest case, such a
last-in-first-out selection function can
be specified by the order in which
literals are written, as in Prolog.

However, the selection function in
SLD resolution is more general than
in SL resolution and in Prolog. There
is no restriction on the literal that can
be selected.

Resolution (14A) 17 Young Won Lim
8/15/14

SLD vs SL Resolution (1)

In SLD, all of the clauses in the sequence are goal clauses,
and the other parent is an input clause in the given set of
definite clauses S.

In SL resolution, the other parent is either an input clause
or an ancestor clause earlier in the sequence.

C

1

C

2

C

i

C
i+

1

C

l

… …

S: given a set of definite clauses

http://www.doc.ic.ac.uk/~rak/papers/History.pd
f

Disjunction form Implication form
Definite clause ¬p ¬q ... ¬t ∨ ∨ ∨ ∨ u u ← p q ... t ∧ ∧ ∧
Fact u u
Goal clause ¬p ¬q ... ¬t ∨ ∨ ∨ false ← p q ... t ∧ ∧ ∧

C

1

C

2

C

i

C
i+

1

C

l

… …

S: given a set of definite clauses

Resolution (14A) 18 Young Won Lim
8/15/14

SLD vs SL Resolution (2)

http://www.doc.ic.ac.uk/~rak/papers/History.pd
f

Disjunction form Implication form
Definite clause ¬p ¬q ... ¬t ∨ ∨ ∨ ∨ u u ← p q ... t ∧ ∧ ∧
Fact u u
Goal clause ¬p ¬q ... ¬t ∨ ∨ ∨ false ← p q ... t ∧ ∧ ∧

In both SL and SLD, "S" stands for
the fact that the only literal resolved
upon in any clause C

i
, is one that is

uniquely selected by a selection rule
or selection function.

In SL resolution, the selected literal
is restricted to one which has been
most recently introduced into the
clause. In the simplest case, such a
last-in-first-out selection function can
be specified by the order in which
literals are written, as in Prolog.

However, the selection function in
SLD resolution is more general than
in SL resolution and in Prolog. There
is no restriction on the literal that can
be selected.

G1, G2, ..., Gi, ..., Gm

H :- B1, ..., Bn

G1, G2, ..., B1, ..., Bn , ..., Gm

selection

Resolution (14A) 19 Young Won Lim
8/15/14

Satisfiability

A formula is satisfiable
if it is possible to find an interpretation (model)
that makes the formula true.

A formula is valid
if all interpretations make the formula true.

A formula is unsatisfiable
if none of the interpretations make the formula
true

A formula is invalid
if some such interpretation makes the formula
false.

φ is valid if and only if ¬φ is unsatisfiable
it is not true that ¬φ is satisfiable.

φ is satisfiable if and only if ¬φ is invalid.

A formula is satisfiable
if it is possible to find an interpretation (model)
that makes the formula true.

A formula is valid
if all interpretations make the formula true.

A formula is unsatisfiable
if none of the interpretations make the formula
true

A formula is invalid
if some such interpretation makes the formula
false.

satisfiability is decidable
for propositional formulae.
satisfiability is an NP-complete problem

Satisfiability is undecidable and indeed it isn't
even a semidecidable property of formulae in
first-order logic (FOL).

This fact has to do with the undecidability of the
validity problem for FOL.

φ is valid if and only if ¬φ is unsatisfiable
it is not true that ¬φ is satisfiable.

φ is satisfiable if and only if ¬φ is invalid.

Resolution (14A) 20 Young Won Lim
8/15/14

Logic Programming

(p q ... t) → u ∧ ∧ ∧

to show u, show p and show q and ... and show t.

u ← (p q ... t)∧ ∧ ∧ u :- p, q, ..., t.

∃X (p q ... t)∧ ∧ ∧

∀X (false ← p q ... t)∧ ∧ ∧ :- p, q, ..., t.

the resolution of a goal clause with a definite clause to produce a new goal clause
is the basis of the SLD resolution inference rule
a definite clause behaves as a goal-reduction procedure

the negation of a problem to be solved as a goal clause.
the problem of solving the existentially quantified conjunction of positive literals
is represented by negating the problem (denying that it has a solution)

Solving the problem amounts to deriving a contradiction,
which is represented by the empty clause (or "false").
The solution of the problem is a substitution of terms for the variables in the goal clause,
which can be extracted from the proof of contradiction.

The Prolog notation is actually ambiguous, and the term “goal clause” is sometimes also used ambiguously.
The variables in a goal clause can be read as universally or existentially quantified,
and deriving “false” can be interpreted either as deriving a contradiction
or as deriving a successful solution of the problem to be solved.

Resolution (14A) 21 Young Won Lim
8/15/14

Resolution Algorithm

Resolvent : a conjunction of current goals to prove (initially Q)

The resolution algorithm
● selects a goal from the resolvent
● searches a clause in the database
● replaces the goal with the body of the clause.

whose head unifies with the goal.

The resolution loop replaces successively goals of the resolvent
until they all reduce to true and the resolvent becomes empty.

a success with a possible instantiation of the query goal Q',
the final substitution is the composition of all the MGUs
involved in the resolution restricted to the variables of Q.

a failure if no rule unifies with the goal.

Refutation: This type of derivation, which terminates when the resolvent is empty

Resolution (14A) 22 Young Won Lim
8/15/14

A Resolution Algorithm

• Initialization

Initialize Resolvent to Q, the initial goal of the resolution algorithm.

Initialize the final substitution σ to {}

Initialize failure to false

• Loop with Resolvent = G1, G2, ..., Gi, ..., Gm

while (Resolvent ≠ ∅) {

1. Select the goal Gi ∈ Resolvent;

2. If Gi == true, delete it and continue;

3. Select the rule H :- B1, ..., Bn in the database

such that Gi and H unify with the MGU θ.

If there is no such a rule then set failure to true; break;

4. Replace Gi with B1, ..., Bn in Resolvent

% Resolvent = G1,...,Gi−1, B1,...,Bn, Gi+1,..., Gm

5. Apply θ to Resolvent and to Q;

6. Compose σ with θ to obtain the new current σ; %the final substitution

}

G1, G2, ..., Gi, ..., Gm

H :- B1, ..., Bn

Most General Unifier

G1, G2, ..., B1, ..., Bn , ..., Gm

Resolution (14A) 23 Young Won Lim
8/15/14

Lists

Each goal in the resolvent (in the body of a rule)
must be different from a variable.

Otherwise, this goal must be instantiated
to a nonvariable term before it is called.

The call/1 built-in predicate then executes it as in the rule:

daughter(X, Y) :- mother(Y, X), G = female(X), call(G).

where call(G) solves the goal G just as if it were female(X).

In fact, Prolog automatically inserts call/1 predicates
when it finds that a goal is a variable.
G is thus exactly equivalent to call(G),
and the rule can be rewritten more concisely in:

daughter(X, Y) :- mother(Y, X), G = female(X), G.

Resolution (14A) 24 Young Won Lim
8/15/14

References

[1] en.wikipedia.org
[2] en.wiktionary.org
[3] U. Endriss, “Lecture Notes : Introduction to Prolog Programming”
[4] http://www.learnprolognow.org/ Learn Prolog Now!
[5] http://www.csupomona.edu/~jrfisher/www/prolog_tutorial
[6] www.cse.unsw.edu.au/~billw/cs9414/notes/prolog/intro.html
[7] www.cse.unsw.edu.au/~billw/dictionaries/prolog/negation.html
[8] http://ilppp.cs.lth.se/, P. Nugues, An Intro to Lang Processing with Perl and Prolog

Young W. Lim
8/15/14

25Resolution (14A)

http://www.learnprolognow.org/
http://www.csupomona.edu/~jrfisher/
http://www.cse.unsw.edu.au/~billw/cs9414/notes/prolog/intro.html
http://www.cse.unsw.edu.au/~billw/dictionaries/prolog/negation.html
http://ilppp.cs.lth.se/

	Slide 1
	Slide 2
	Slide 4
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

