
Young Won Lim
3/9/19

Monad P1 : Overview (2A)

Young Won Lim
3/9/19

 Copyright (c) 2016 - 2019 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Monad Overview (2A) 3 Young Won Lim
3/9/19

Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps

Monad Overview (2A) 4 Young Won Lim
3/9/19

monad (plural monads)

● An ultimate atom, or simple, unextended point;

something ultimate and indivisible.

● (mathematics, computing) A monoid in the

category of endofunctors.

● (botany) A single individual (such as a pollen

grain) that is free from others, not united in a

group.

monoid (plural monoids)

● (mathematics) A set which is closed under an

associative binary operation, and which contains

an element which is an identity for the operation.

https://en.wiktionary.org/wiki/monad, monoid

Monad, Monoid

https://en.wiktionary.org/wiki/monad

Monad Overview (2A) 5 Young Won Lim
3/9/19

a monad is a parameterized type m

Maybe is not a concrete type

Maybe Int is a concrete type

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Monad – a parameterized type

class Monad m where ...

instance Monad Maybe where ...

m a

Maybe a

Monadic type

single
parameter

Maybe Int

Maybe Float

IO Float

IO ()

…

Monad Overview (2A) 6 Young Won Lim
3/9/19

A notion of computations

a value of type M a is interpreted as

a statement in an imperative language M

that returns a value of type a as its result;

this statement describes what effects are possible.

executing this statement returns the result

which is like executing a function

 effects + result

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

 M a

computations resulting in values

imperative code

monadic type

Monad Overview (2A) 7 Young Won Lim
3/9/19

Semantics of a language M

Semantics : what the language M allows us to say.

a statement describes which effects are possible.

the semantics of this language are determined by the monad M

In the case of Maybe,

the semantics allow us to express failures

when a statement fails to produce a result,

allowing the following statements to be skipped

an immediate abort

a valueless return in the middle of a computation.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

Monad Overview (2A) 8 Young Won Lim
3/9/19

A value of type M a

mx :: M a

a value mx of type M a :

an execution of a function
computations that result in values

a in M a shows what type of value
is produced by the operation

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

M a represent a parameterized Monad type

● Maybe a

● IO a

● ST a

● State s a

function application, execution, a return value

the type M a a monadic value mx

an imperative language M a statement in M returning a type a value

function definition

Monad Overview (2A) 9 Young Won Lim
3/9/19

defining a Monad type in Haskell

- similar to defining a class

 in an object oriented language (C++, Java)

- a Monad can do much more than a class:

A Monad type can be used for

● exception handling

● parallel program workflow

● a parser generator

http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

A Monad type

Monad Overview (2A) 10 Young Won Lim
3/9/19

Haskell types are the rules associated with the data,

not the actual data itself.

OOP (Object-Oriented Programming) enable us

to use classes / interfaces

to define types,

the rules (methods) that interacts with the actual data.

to use templates(c++) or generics(java)

to define more abstracted rules that are more reusable

Monad is pretty much like templates / generic class.

http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

Types: rules and data

Rules + Data

Rules

collection of methods
to be implemented

Monad Overview (2A) 11 Young Won Lim
3/9/19

a monad is a parameterized type m

that supports return and >>= functions of the specified types

 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

to sequence m a type values.

the do notation can be used

generally, the (>>=) bind operator is used

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Monad methods

m a represent

a parameterized Monad type
● Maybe a
● IO a
● ST a
● State s a

Monad Overview (2A) 12 Young Won Lim
3/9/19

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Maybe Monad – an action and its result

 M a

computations resulting in values

imperative code

monadic type

computations resulting in values

:: Maybe amx

if meaningful value, Just x
otherwise, Nothing

The result value of Just x is
x :: a
Nothing returns always
Nothing (the monadic value)

pass only
meaningful
value x

semantics

effects

mx has two forms

Just x

Nothing

Monad Overview (2A) 13 Young Won Lim
3/9/19

class Monad m where

 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

instance Monad Maybe where
 -- return :: a -> Maybe a
 return x = Just x

 -- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
 Nothing >>= _ = Nothing
 (Just x) >>= f = f x

 f :: a -> Maybe b

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Maybe Monad Instance

m a

Maybe a

 a parameterized type

method type signatures

return method definition

>>= method definition

Monad Overview (2A) 14 Young Won Lim
3/9/19

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Maybe Monad – the bind operator (>>=)

pass only the meaningful value

Just 10 >>= g g 10

Nothing >>= g Nothing

computation stops immediately

Just 3 Just 4

return (x+1)

Nothing Nothing

3 return 4

g x = return (x+1)

g :: Int -> Maybe Int
g = \x -> return (x+1)

a general function g can return
Nothing depending on its input x
(eg. divide by zero)

g

g :: a -> m b

Monad Overview (2A) 15 Young Won Lim
3/9/19

(Just x) >>= f = f x

Assume

(Just x) :: Maybe Int

f :: Int -> Maybe Int

f = \x -> return x+1

f x = return x+1 -- Just (x+1) :: Maybe Int

-- Nothing :: Maybe Int

(>>=) :: m a -> (a -> m b) -> m b

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Maybe Monad – (>>=) type signature

Monad Overview (2A) 16 Young Won Lim
3/9/19

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Maybe Monad – the assignment operator (<-)

dt1 = do { x <- Just 3;

 if x == 3 then return 33;

 else return 44;}

dt2 = do { x <- Just 4;

 if x == 3 then return 33;

 else return 44;}

dt3 = do { x <- Nothing;

 if x == 3 then return 33;

 else return 44;}

Just 3 Just 33

x = 3

Just 4 Just 44

x = 4

Nothing Nothing

No assignment to x

After evaluating the monadic value,

only the result 33 is assigned to x

Only a meaningful number

is assigned to x

Monad Overview (2A) 17 Young Won Lim
3/9/19

Maybe Person type

A value of the type Maybe Person,

is interpreted as a statement in an imperative language

that returns a Person as the result, or fails.

father p, which is a function application,

has also the type Maybe Person

p :: Person

father p :: Maybe Person

mother q :: Maybe Person

father :: Person -> Maybe Person

mother :: Person -> Maybe Person

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

father p =

Just q

Nothing

Monad Overview (2A) 18 Young Won Lim
3/9/19

Maybe (Person, Person) type

bothGrandfathers :: Person -> Maybe (Person, Person)

bothGrandfathers p =
 father p >>=
 (\dad -> father dad >>=
 (\gf1 -> mother p >>=
 (\mom -> father mom >>=
 (\gf2 -> return (gf1,gf2)))))

bothGrandfathers p = do {
 dad <- father p;
 gf1 <- father dad;
 mom <- mother p;
 gf2 <- father mom;
 return (gf1, gf2);
 }

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

p :: Person

father p :: Maybe Person

mother q :: Maybe Person

dad :: Person

gf1 :: Person

mom :: Person

gf2 :: Person

(gf1, gf2) :: Maybe (Person, Person)

gf1 is only used in the final return

Monad Overview (2A) 19 Young Won Lim
3/9/19

Fail to return result exception

Sequencing operator >>= and do bock look like

an imperative programming code

but they support exceptions : Nothing

father and mother are functions

that might fail to produce results,

raising an exception instead; Nothing

when any exception happens,

the whole code will fail, i.e.

terminate with an exception

(evaluate to Nothing).

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

Just p Just q

Nothing Nothing

p father p

p :: Person

father p :: Maybe Person

father
Nothing

Monad Overview (2A) 20 Young Won Lim
3/9/19

The Maybe monad provides

a simple model of computations that can fail,

a value of type Maybe a is

either Nothing (failure) or

the form Just x for some x of type a (success)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Maybe Monad – the value for failure

Monad Overview (2A) 21 Young Won Lim
3/9/19

The list monad generalizes this notion,

by permitting multiple results in the case of success.

a value of [a] is

either the empty list [] (failure)

or the form of a non-empty list [x1,x2,...,xn] (success)

for some xi of type a

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

List Monad – the value for failure

Monad Overview (2A) 22 Young Won Lim
3/9/19

instance Monad [] where
 -- return :: a -> [a]
 return x = [x]

 -- (>>=) :: [a] -> (a -> [b]) -> [b]
 xs >>= f = concat (map f xs)

return converts a value into a successful result
containing that value

>>= provides a means of sequencing computations
that may produce multiple results:

xs :: [a]

f :: a -> [b]

(>>=) :: [a] -> (a -> [b]) -> [b]

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

List Monad methods

Monad Overview (2A) 23 Young Won Lim
3/9/19

xs >>= f applies the function f
to each of the results in the list xs = [x1, x2, x3]

f x1 = [y1, y2]
f x3 = [y5, y6]
f x2 = [y3, y4]

to give a nested list of results,

[[y1,y2], [y3,y4], [y5,y6]] map f xs

which is then concatenated
to give a single list of results.

[y1, y2, y3, y4, y5, y6] concat (map f xs)

(Aside: in this context, [] denotes
the list type [a] without its parameter.)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

List Monad bind operator example 1

[x1, x2, x3]

[[y1, y2], [y3, y4], [y5, y6]]

[y1, y2, y3, y4, y5, y6]

map f xs

xs

concat (map f xs)

f f f

Monad Overview (2A) 24 Young Won Lim
3/9/19

xs :: [a]

f :: a -> [b]

(>>=) :: [a] -> (a -> [b]) -> [b]

f :: Int -> [Int]

f = \n -> [1 .. n]

[1, 2, 3] >>= \n -> [1..n]

[1,1,2,1,2,3] [[1], [1,2], [1,2,3]]

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

List Monad bind operator example 2

f 1 = [1]
f 2 = [1, 2]
f 3 = [1, 2, 3]

Monad Overview (2A) 25 Young Won Lim
3/9/19

Monad sequencing operators >> and >>=

Monad Sequencing Operator

>> is used to order the evaluation of expressions

within some context;

it makes evaluation of the right

depend on the evaluation of the left

Monad Sequencing Operator with value passing

>>= passes the result of the expression on the left

as an argument to the expression on the right,

while preserving the context that the argument and function use

https://www.quora.com/What-do-the-symbols-and-mean-in-haskell

Monad Overview (2A) 26 Young Won Lim
3/9/19

Contexts of >> and >>=

https://www.quora.com/What-do-the-symbols-and-mean-in-haskell

Just 10 :: Maybe Int

Just 10 >>= f f 10
10 is passed to the function

f has an argument

f :: Int -> Maybe Int

Just 10 >> g g
no value passing

g cannot be a function

g can be Maybe monad value

g :: Maybe Int

Monad Overview (2A) 27 Young Won Lim
3/9/19

Monad sequencing operators and do statements

the then operator (>>)

an implementation of the semicolon

The bind operator (>>=)

an implementation of the semicolon (;) and

assignment (<-) of the result

of a previous computational step.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

 do <- ;

Just 3 >>= (\x -> return (x + 3))

x

Just 3 >> Just 4

do x <- Just 3 ; return (x + 3)

 >>=

do Just 3 ; Just 4

 do ;
 >>

Monad Overview (2A) 28 Young Won Lim
3/9/19

Bind operator (>>=) and the function application (let)

an assignment and semicolon as the bind operator:

 x <- foo; return (x + 3) foo >>= (\x -> return (x + 3))

foo :: m a
return :: a -> m b

a let expression as a function application,

 let x = foo in (x + 3) foo & (\x -> id (x + 3))

foo :: a

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

& and id are trivial;

id is the identity function

just returns its parameter

unmodified

>>= and return are substantial

the operation depends on the
particular Monad m

x

x

v & f = f v

arg & func func arg

reverse function application &

nothing to do with ‘AND’

Monad Overview (2A) 29 Young Won Lim
3/9/19

Bind operator (>>=) and the semantics of Maybe (1)

an assignment and semicolon as the bind operator:

 x <- foo; return (x + 3) foo >>= (\x -> return (x + 3))

The bind operator >>= combines together two computational steps,

foo and return (x + 3),

in a manner particular to the Monad M,

while creating a new binding for the variable x to hold foo's result,

making x available to the next computational step, return (x + 3).

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

Monad Overview (2A) 30 Young Won Lim
3/9/19

Bind operator (>>=) and the semantics of Maybe (2)

an assignment and semicolon as the bind operator:

 x <- foo; return (x + 3) foo >>= (\x -> return (x + 3))

In the particular case of Maybe, semantics

if foo fails to produce a result, Nothing

the second step will be skipped and

the whole combined computation will also fail immediately. Nothing

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

Monad Overview (2A) 31 Young Won Lim
3/9/19

Function application using & and id

a let expression as a function application,

 let x = foo in (x + 3) foo & (\x -> id (x + 3))

The & operator combines together two pure calculations,

foo and id (x + 3)

while creating a new binding for the variable x to hold foo's value, x ← foo

making x available to the second computational step: id (x + 3).

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

Monad Overview (2A) 32 Young Won Lim
3/9/19

Reverse Function Application &

(&) :: a -> (a -> b) -> b

& is just like $ only backwards.

foo $ bar $ baz $ bin

semantically equivalent to:

bin & baz & bar & foo

& is useful because the order in which functions are applied

to their arguments read left to right instead of the reverse

(which is the case for $).

This is closer to how English is read so it can improve code clarity.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

arg function

Monad Overview (2A) 33 Young Won Lim
3/9/19

Monad Definition

class Monad m where

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

 (>>) :: m a -> m b -> m b

 fail :: String -> m a

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

Maybe a

IO a

ST a

State s a

m a

1) return

2) bind (>>=)

3) then (>>)

4) fail

Monad Overview (2A) 34 Young Won Lim
3/9/19

Maybe Monad Instance

instance Monad Maybe where

 return x = Just x

 Nothing >>= f = Nothing

 Just x >>= f = f x

 fail _ = Nothing

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

Monad Overview (2A) 35 Young Won Lim
3/9/19

State Monad Instance

instance Monad (State s) where

 return :: a -> State s a

 return x = state (\s -> (x, s))

 (>>=) :: State s a -> (a -> State s b) -> State s b

 p >>= k = q where

 p' = runState p -- p' :: s -> (a, s)

 k' = runState . k -- k' :: a -> s -> (b, s)

 q' s0 = (y, s2) where -- q' :: s -> (b, s)

 (x, s1) = p' s0 -- (x, s1) :: (a, s)

 (y, s2) = k' x s1 -- (y, s2) :: (b, s)

 q = State q'

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Monad Overview (2A) 36 Young Won Lim
3/9/19

IO Monad Instance

instance Monad IO where

 m >> k = m >>= \ _ -> k

 return = returnIO

 (>>=) = bindIO

 fail s = failIO s

returnIO :: a -> IO a

returnIO x = IO $ \s -> (# s, x #)

bindIO :: IO a -> (a -> IO b) -> IO b

bindIO (IO m) k

 = IO $ \s -> case m s of (# new_s, a #)

 -> unIO (k a) new_s

https://stackoverflow.com/questions/9244538/what-are-the-definitions-for-and-return-for-the-io-monad

 case expression of

pattern -> result

 pattern -> result

 pattern -> result

 ... m = new_s,
s = a
(k a) new_s
(k s) m

Monad Overview (2A) 37 Young Won Lim
3/9/19

A type is just a set of rules, or methods

in Object-Oriented terms

A Monad is just yet another type, and

the definition of this type is defined by four rules:

1) bind (>>=)

2) then (>>)

3) return

4) fail

http://www.idryman.org/blog/2014/01/23/yet-another-monad-
tutorial/

Monad Rules

Rules (methods)

Monad Overview (2A) 38 Young Won Lim
3/9/19

Monad Minimal Definition

A minimal definition of monad

 a type constructor m;

 a function return;

 an operator (>>=) “bind"

The function and operator

● are methods of the Monad type class

● have types (type signatures)

 return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

are required to obey three laws

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

Maybe

IO

ST

State s

m =

a type constructor m

Monad Overview (2A) 39 Young Won Lim
3/9/19

Monad Laws

every instance of the Monad type class must obey

 m >>= return = m -- right unit

 return x >>= f = f x -- left unit

 (m >>= f) >>= g = m >>= (\x -> f x >>= g) -- associativity

m :: M a monadic value of type M a

x :: a

f :: a -> M b

f x :: M b

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

return :: a -> M a

(>>=) :: M a -> (a -> M b) -> M b

m :: M a

Maybe a

IO a

ST a

State s a

Monad Overview (2A) 40 Young Won Lim
3/9/19

Monad Laws Examples (1)

 m >>= return = m -- right unit

 return x >>= f = f x -- left unit

right unit

(m >>= return) = m

(Just 3 >>= return) = Just 3

left unit

((return x) >>= f) = f x

((return 3) >>= (\x -> return (x+1))) = return 4 = Just 4

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

m :: M a

x :: a

f :: a -> M b

Monad Overview (2A) 41 Young Won Lim
3/9/19

Monad Laws Examples (2)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

 (m >>= f) >>= g = m >>= (\x -> f x >>= g) -- associativity

f = (\x -> return (x+1))

g = (\x -> return (2*x))

m = Just 3

(Just 3 >>= f) >>= g = Just 3>>= (\x -> f x >>= g)

m :: M a

x :: a

f :: a -> M b

g :: b -> M c

Monad Overview (2A) 42 Young Won Lim
3/9/19

Monad Laws Examples (3)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

 (m >>= f) >>= g = m >>= (\x -> f x >>= g) -- associativity

((Just 3) >>= f)

((Just 3) >>= (\x -> return (x+1))) = Just 4

((Just 3) >>= f) >>= g

((Just 4) >>= (\x -> return (2*x))) = Just 8

(\x -> f x >>= g)

((\x -> return (x+1)) >>= (\x -> return (2*x))) = (\x -> return (2*(x+1)))

((Just 3) >>= (\x -> return (2*(x+1)))) = Just 8

m :: M a

x :: a

f :: a -> M b

g :: b -> M c

Monad Overview (2A) 43 Young Won Lim
3/9/19

fmap and a functor M

 fmap :: (a -> b) -> M a -> M b -- functor M

the functors-as-containers metaphor

a functor M – a container

M a contains a value of type a

fmap allows functions to be applied to values in the container

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

Monad Overview (2A) 44 Young Won Lim
3/9/19

join and a functor M

 join :: M (M a) -> M a

as the computation going deeper into the monad, M (…(M (M a))...)

nothing is being taken "out" of the monad

with successive steps being collapsed

into a single layer of the monad. M a

https://stackoverflow.com/questions/15016339/haskell-computation-in-a-monad-meaning

successive
applications
of join

Monad Overview (2A) 45 Young Won Lim
3/9/19

The associativity and identity of join

 join :: M (M a) -> M a

M (M (M a)) M (M a) M a

M (M (M a)) M (M a) M a

 return :: a -> M a

join (return x) = return x

it doesn't matter when join is applied,

as long as the nesting order is preserved

(a form of associativity)

the monadic layer introduced by return does nothing

(an identity value for join).

https://stackoverflow.com/questions/15016339/haskell-computation-in-a-monad-meaning

import Control.Monad

join (Just (Just 10))

Just 10

join (Just (Just (Just 10)))

 Just (Just 10)

Monad Overview (2A) 46 Young Won Lim
3/9/19

Function application, packaging, flattening

 fmap applies a function to a value in a container

 return packages a value in a container

 join flattens a container in containers

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

fmap :: (a -> b) -> M a -> M b

return :: a -> M a

join :: M (M a) -> M a

applying

flattening

packaging

Monad Overview (2A) 47 Young Won Lim
3/9/19

fmap :: (a -> b) -> (m a -> m b)

return :: a -> m a

join :: m (m a) -> m a

starting with arguments of type m a and a -> m b,

use fmap to get the type of m (m b),

fmap :: (a -> b) -> (m a -> m b)

 (a -> m b) -> (m a -> m (m b))

join to flatten the nested "layers" to get just m b.

 join . fmap :: (a -> m b) -> (m a -> m b)

 (>>=) :: m a -> (a -> m b) -> m b

https://stackoverflow.com/questions/15016339/haskell-computation-in-a-monad-meaning

Three orthogonal functions and >>=

Assumption: m a is a
parameterized Monad type

must figure out the followings

Monad Overview (2A) 48 Young Won Lim
3/9/19

>>= by join.fmap

(>>=) in terms of join and fmap

 m >>= g = join (fmap g m)

 join.fmap :: (a -> m b) -> m a -> m b

 (>>=) :: m a -> (a -> m b) -> m b

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

Assumption: m is a
monadic value of M a type

Assumption: m a is a
parameterized Monad type

must figure out the followings

Monad Overview (2A) 49 Young Won Lim
3/9/19

join.fmap vs concat.map

(>>=) in terms of join and fmap

 m >>= g = join (fmap g m)

instance Monad [] where

 -- return :: a -> [a]

 return m = [m]

 -- (>>=) :: [a] -> (a -> [b]) -> [b]

 m >>= g = concat (map g m)

 m >>= g = concat (map g m)

 m >>= g = join (fmap g m)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

Assumption: m is a
monadic value of M a type

Assumption: m is a
monadic value of [a] type

Assumption: m is a value of
a type

must figure out the followings

Monad Overview (2A) 50 Young Won Lim
3/9/19

fmap & join by >>= & return

fmap and join in terms of (>>=) and return

 fmap f x = x >>= (return . f)

 join x = x >>= id

 fmap (*3) (Just 10) = Just 10 >>= return . (* 3) Just 30

 join (Just (Just 10)) = Just (Just 10)) >>= id Just 10

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

Assumption: x is a monadic
value of M a type

must figure out the followings

Monad Overview (2A) 51 Young Won Lim
3/9/19

Monad’s lifting capability

a Monad is just a special Functor with extra features

Monads

map types to new types

that represent "computations that result in values"

liftM (like fmap)

can lift regular functions into Monad types

(a -> b) (m a -> m b)

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell

a M a
types new types

f liftM f
(a -> b) (m a -> m b)

Monad Overview (2A) 52 Young Won Lim
3/9/19

liftM function over monadic values

Control.Monad defines liftM

liftM transform a regular function

into a "computations that results in the value

obtained by evaluating the function."

liftM :: (Monad m) => (a -> b) -> m a -> m b

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

f :: a -> b

liftM f :: M a -> M b

computations that
results in the value
obtained by
evaluating the
function

Monad Overview (2A) 53 Young Won Lim
3/9/19

liftM function & fmap

liftM :: (Monad m) => (a -> b) -> m a -> m b

liftM is merely

fmap implemented with (>>=) and return

fmap f x = x >>= (return . f)

liftM and fmap are therefore interchangeable.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

Assumption:

x is a monadic value of m a type

f :: a -> b

Monad Overview (2A) 54 Young Won Lim
3/9/19

(>>=) & fmap comparisons

fmap f xs = xs >>= (return . f)

 xs >>= f = concat (map f xs)

 xs >>= f = join (fmap f xs)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

xs is a monadic value of m a type

f :: a -> b

xs is a monadic value of [a] type

f :: a -> [b]

xs is a monadic value of m a type

f :: a -> m b

Monad Overview (2A) 55 Young Won Lim
3/9/19

liftM – function lifting

a M a

f :: a -> b

liftM f :: M a -> M b

f

M a

liftM

M b

a b

f
a b

M a

fmap f

M blifting

type lifting

function lifting

Monad Overview (2A) 56 Young Won Lim
3/9/19

return – type lifting

The function return lifts a plain value a to M a

The statements in the imperative language M

when executed, will result in the value a

without any additional effects particular to M.

This is ensured by Monad Laws,

foo >>= return === foo

foo >>= return

foo

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

a M a
lifting

return x >>= k === k x;

return x >>= k

k x;

Monad Overview (2A) 57 Young Won Lim
3/9/19

ap Function

Control.Monad defines ap function

ap :: Monad m => m (a -> b) -> m a -> m b

Analogously to the other cases,

ap is a monad-only version of (<*>).

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

M f :: M (a -> b)

ap M f :: M a -> M b

application

application

Monad Overview (2A) 58 Young Won Lim
3/9/19

liftM vs fmap and ap vs <*>

liftM :: Monad m => (a -> b) -> m a -> m b

fmap :: Functor f => (a -> b) -> f a -> f b

ap :: Monad m => m (a -> b) -> m a -> m b

(<*>) :: Applicative f => f (a -> b) -> f a -> f b

(>>=) :: Monad m => m a -> (a -> m b) -> m b

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

Young Won Lim
3/9/19

References

[1] https://en.wiktionary.org/wiki/monad, monoid

[2] https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

[3] https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

[4] http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

[5] https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

[6] https://www.quora.com/What-do-the-symbols-and-mean-in-haskell

[7] https://en.wikibooks.org/wiki/Haskell/Understanding_monads

[8] https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

[9] https://stackoverflow.com/questions/9244538/\what-are-the-definitions-for-and-return-
for-the-io-monad

[10] https://stackoverflow.com/questions/15016339/haskell-computation-in-a-monad-
meaning

[11] https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-
haskell

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59

