
Young Won Lim
7/27/18

Monad Transformer (3I)



Young Won Lim
7/27/18

 Copyright (c)  2016  - 2018 Young W. Lim.

  Permission is granted to copy, distribute and/or modify this document  under the terms of the GNU Free Documentation License, Version 1.2 or any 
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.  A copy of the 
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com


Monad Transformer (3I) 3 Young Won Lim
7/27/18

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps



Monad Transformer (3I) 4 Young Won Lim
7/27/18

Monad Transformers

Using several monads at once for more functionality

a function could use both I/O and Maybe exception handling 

While a nested type like IO (Maybe a) would work just fine, 
it would force us to do pattern matching 
within IO do-blocks to extract values, 
something that the Maybe monad offers to remove

monad transformers: 
special types that allow us to roll two monads 
into a single one that shares the behavior of both.
(functionality)

https://wiki.haskell.org/Lifting



Monad Transformer (3I) 5 Young Won Lim
7/27/18

Monad Transformer Name Convetion 

define a monad transformer that gives the IO monad 
some characteristics (functionality) of the Maybe monad; 
it is called MaybeT 

Maybe → IO

monad transformers have a "T" appended 
to the name of the monad 
whose characteristics they provide.
(functionality, behavior)

https://wiki.haskell.org/Lifting



Monad Transformer (3I) 6 Young Won Lim
7/27/18

There are currently several packages 
that implement similar interfaces to monad transformers 

besides an additional package with a similar goal 
but different interfaces (API) named MonadLib 

● transformers package
● mtl (monad transformer library) package
● monads-fd package
● monads-tf package

https://wiki.haskell.org/Monad_Transformers

Packages for Monad Transformers 



Monad Transformer (3I) 7 Young Won Lim
7/27/18

classes: 
MonadTrans 
MonadIO, 

concrete monad transformers (instances) 
StateT,  etc 

multi-parameter type synonyms
The monad State s a is only 
a type synonym for StateT s Identity a. 

Thus both State and StateT can be accessed 
by the same methods like put and get. 

However, this only works if StateT is 
the top-most transformer 
in a monad transformer stack. 

https://wiki.haskell.org/Monad_Transformers

The transformers package

transformers package
MonadTrans class
MonadIO class
StateT instance



Monad Transformer (3I) 8 Young Won Lim
7/27/18

A portable library of functor and monad transformers

the monad transformer class (in Control.Monad.Trans.Class)

concrete functor and monad transformers 

each with associated operations and functions 

to lift operations associated with other transformers.

The package can be used on its own in portable Haskell code, 

in which case operations need to be manually lifted 

through transformer stacks 

Alternatively, it can be used with the non-portable monad classes 

in the mtl or monads-tf packages, 

which automatically lift operations introduced 

by monad transformers through other transformers.

http://hackage.haskell.org/package/transformers

The transformers package



Monad Transformer (3I) 9 Young Won Lim
7/27/18

version 1 mtl : the first implementation, this version is now obsolete.

classes

MonadTrans 

MonadIO 

concrete monad transformers 

StateT, etc.

multi-parameter type classes with functional dependencies 

MonadState, etc. 

Monads like State and their transformer counterparts like StateT 

are distinct types and can be accessed uniformly 

only through a type class abstraction like MonadState. 

https://wiki.haskell.org/Monad_Transformers

The version 1 mtl package

ver 1 mtl package
MonadTrans class
MonadIO class
StateT instance
MonadState class



Monad Transformer (3I) 10 Young Won Lim
7/27/18

version 2 mtl : 

re-exports the classes and monad transformers 

of the transformers package, 

and adds multi-parameter type classes 

with functional dependencies such as MonadState. 

classes

MonadTrans 

MonadIO 

concrete monad transformers 

StateT, etc.

multi-parameter type classes with functional dependencies 

MonadState, etc. 

https://wiki.haskell.org/Monad_Transformers

The version 2 mtl package

ver 2 mtl package
MonadTrans class
MonadIO class
StateT instance
MonadState class

re-exports of 
transformer package
+  
multi-parameter
type classes

re-exports of the 
transformers package, 



Monad Transformer (3I) 11 Young Won Lim
7/27/18

            Control.Monad.Cont
                Control.Monad.Cont.Class
            Control.Monad.Error
                Control.Monad.Error.Class
            Control.Monad.Except
            Control.Monad.Identity
            Control.Monad.List
            Control.Monad.RWS
                Control.Monad.RWS.Class
                Control.Monad.RWS.Lazy
                Control.Monad.RWS.Strict
            Control.Monad.Reader
                Control.Monad.Reader.Class
            Control.Monad.State
                Control.Monad.State.Class
                Control.Monad.State.Lazy
                Control.Monad.State.Strict
            Control.Monad.Trans
            Control.Monad.Writer
                Control.Monad.Writer.Class
                Control.Monad.Writer.Lazy
                Control.Monad.Writer.Strict

https://hackage.haskell.org/package/transformers

The transformers vs mtl packages

    Control.Monad.Signatures
    Trans
        Control.Monad.Trans.Accum
        Control.Monad.Trans.Class
        Control.Monad.Trans.Cont
        Control.Monad.Trans.Error
        Control.Monad.Trans.Except
        Control.Monad.Trans.Identity
        Control.Monad.Trans.List
        Control.Monad.Trans.Maybe
        Control.Monad.Trans.RWS
            Control.Monad.Trans.RWS.Lazy
            Control.Monad.Trans.RWS.Strict
        Control.Monad.Trans.Reader
        Control.Monad.Trans.Select
        Control.Monad.Trans.State
            Control.Monad.Trans.State.Lazy
            Control.Monad.Trans.State.Strict
        Control.Monad.Trans.Writer
            Control.Monad.Trans.Writer.Lazy
            
Control.Monad.Trans.Writer.Strict

transformers mtl



Monad Transformer (3I) 12 Young Won Lim
7/27/18

 1 MTL and transformers use different module names, 

but share common classes, type constructors and functions, 

so they are fully compatible.

2 Transformers is Haskell 98 and thus more portable, 

and doesn't tie you to functional dependencies. 

But because it lacks the monad classes, you'll have 

to lift operations manually to the composite monad yourself.

3 Many package using MTL can be ported to transformers 

with only slight modifications. 

Modules require the Trans infix, e.g. 

For constructing you must use the function state 

and instead of matching patterns you must call runState. 

http://hackage.haskell.org/package/transformers

The transformers and mtl package

import Control.Monad.State ... 
import Control.Monad.Trans.State .... 

Since State is only a type synonym, 
there is no longer a constructor 
named State. 



Monad Transformer (3I) 13 Young Won Lim
7/27/18

The transformers package contains

● the monad transformer class (in Control.Monad.Trans.Class)

● concrete functor and monad transformers, 

each with associated operations and functions 

to lift operations associated with other transformers.

The transformers package can be used 

on its own in portable Haskell code, 

in which case operations need to be manually lifted 

through transformer stacks 

Alternatively, it can be used with the non-portable monad classes 

in the mtl or monads-tf packages, 

which automatically lift operations 

introduced by monad transformers through other transformers.

https://hackage.haskell.org/package/transformers

Automatic and Manual Lifting 

transformers package
: manual lifting

mtl (monads-tf) package
: automatic lifting



Monad Transformer (3I) 14 Young Won Lim
7/27/18

Monad Transformer Class 

Control.Monad.Trans.Class

class MonadTrans t where
    lift :: Monad m => m a -> t m a    

-- lifts a value from the inner monad m 
-- to the transformed monad t m  
-- could be called lift0

Laws 
    lift . return = return
    lift (m >>= f) = lift m >>= (lift . f)

https://hackage.haskell.org/package/transformers-0.5.5.0/docs/Control-Monad-Trans-Class.html



Monad Transformer (3I) 15 Young Won Lim
7/27/18

Monad Transformer Instances 

Control.Monad.Trans.Class

MonadTrans ListT 
MonadTrans MaybeT
MonadTrans (ErrorT e)
MonadTrans (ExceptT e)
MonadTrans (IdentityT :: (* -> *) -> * -> *)
MonadTrans (SelectT r)
MonadTrans (StateT s)
MonadTrans (StateT s)
Monoid w => MonadTrans (WriterT w)
Monoid w => MonadTrans (AccumT w)
Monoid w => MonadTrans (WriterT w)
MonadTrans (ContT r)
MonadTrans (ReaderT r :: (* -> *) -> * -> *)
Monoid w => MonadTrans (RWST r w s)
Monoid w => MonadTrans (RWST r w s)
 

https://hackage.haskell.org/package/transformers-0.5.5.0/docs/Control-Monad-Trans-Class.html



Monad Transformer (3I) 16 Young Won Lim
7/27/18

making a double, triple, quadruple, ... monad 

by wrapping around existing monads 

that provide wanted functionality. 

the innermost monad is usually Identity or IO

but it can be any monad. 

monad transformers wrap around this monad 

to make bigger, better monads. 

To do stuff in an inner monad → cumbersome → auto-lifting mtl

https://wiki.haskell.org/Monad_Transformers_Explained

Transformer Stacks

a  M a N M a O N M a

 lift $ lift $ lift $ foo



Monad Transformer (3I) 17 Young Won Lim
7/27/18

Each monad in the mtl is defined in terms of a type class. 

Reader is an instance of MonadReader, 

ReaderT is also an instance of MonadReader

anything that wraps a MonadReader is 

also set up to be a MonadReader

asks and local functions will work without any (manual) lifting. 

Other mtl monads behave in a similar way. 

https://wiki.haskell.org/Monad_Transformers_Explained

Auto-lifting in mtl MonadReader



Monad Transformer (3I) 18 Young Won Lim
7/27/18

(+) 1 2  -- prefix function
(*) 3 4  -- prefix function

1 + 2 -- infix function
3 * 4 -- infix function 

(->) r a

r -> a 

https://www.mjoldfield.com/atelier/2014/07/monads-fn.html

((->) r) 

->
r

(->) r
r

->
r

(->) r



Monad Transformer (3I) 19 Young Won Lim
7/27/18

class Monad m => MonadIO m where

Monads in which IO computations may be embedded. 

Any monad built by applying a sequence of monad transformers 

to the IO monad will be an instance of this class.

Instances should satisfy the following laws, 

which state that liftIO is a transformer of monads:

    liftIO . return = return

    liftIO (m >>= f) = liftIO m >>= (liftIO . f)

liftIO  Lift a computation from the IO monad.

liftIO :: IO a -> m a

http://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-Reader.html

mtl MonadIO



Monad Transformer (3I) 20 Young Won Lim
7/27/18

configuration that would be global (in an imperative program) 

because client handling threads all need to query it.

data Config = Config Foo Bar Baz

to use currying and making all the client threads of type Config -> IO ()

Not good because any functions they call 

have to be passed the Config parameter manually. 

https://wiki.haskell.org/Monad_Transformers_Explained

Auto-lifting in mtl MonadReader



Monad Transformer (3I) 21 Young Won Lim
7/27/18

The Reader monad solves this problem 

need to wrap IO in a ReaderT

The type constructor for ReaderT is 

ReaderT r m a

r the shared environment to read from
m the inner monad  
a the return type. 

https://wiki.haskell.org/Monad_Transformers_Explained

Auto-lifting in mtl MonadReader



Monad Transformer (3I) 22 Young Won Lim
7/27/18

client_func :: ReaderT Config IO ()

Config the shared environment 

IO the inner monad  

() the return type. 

We can then use the ask, asks and local functions 

as if Reader was the only Monad: 

(these examples are inside do blocks)

p <- asks port

https://wiki.haskell.org/Monad_Transformers_Explained

Auto-lifting in mtl MonadReader



Monad Transformer (3I) 23 Young Won Lim
7/27/18

This is all well and good, but the client_func

now has type ReaderT Config IO ()

and forkIO needs a function of type IO ()

The escape function for Reader

runReader :: Reader r a -> r -> a

Similarly, the escape function for ReaderT

runReaderT :: ReaderT r m a -> r -> m a

(Given some c :: Config

that's been assembled from config files or the like)

forkIO (runReaderT client_func c)

https://wiki.haskell.org/Monad_Transformers_Explained

Auto-lifting in mtl MonadReader



Monad Transformer (3I) 24 Young Won Lim
7/27/18

A type class called MonadIO

is used to implement a similar trick as above. 

IO is an instance of MonadIO

any mtl transformer that wraps a MonadIO instance 

also is an instance of MonadIO

This means that IO functions need only use liftIO

and not a big chain of lifts. 

Note also that IO has no transformer 

always be the innermost monad. 

https://wiki.haskell.org/Monad_Transformers_Explained

Auto-lifting in mtl MonadIO



Monad Transformer (3I) 25 Young Won Lim
7/27/18

IO is an instance of MonadIO 

any mtl transformer that wraps a MonadIO instance 

also is an instance of MonadIO

thus, IO functions need only use liftIO

and not a big chain of lift’s. 

(given h :: Handle, the client's handle)

liftIO $ hPutStrLn h "You win"

liftIO $ hFlush h

Note also that IO has no transformer 

must therefore always be the innermost monad.

https://wiki.haskell.org/Monad_Transformers_Explained

Auto-lifting in mtl MonadIO



Monad Transformer (3I) 26 Young Won Lim
7/27/18

Precursor Transformer Original Type Combined Type

Writer WriterT (a, w) m (a, w)

Reader ReaderT  r -> a r -> m a

State StateT s -> (a, s) s -> m (a, s)

Cont ContT  (a -> r) -> r (a -> m r) -> m r

https://en.wikibooks.org/wiki/Haskell/Monad_transformers

Monad Transformers



Monad Transformer (3I) 27 Young Won Lim
7/27/18

Define a monad transformer that gives the IO monad 

some characteristics of the Maybe monad; 

Call it MaybeT. 

MaybeT is a wrapper around m (Maybe a), 

where m can be any monad (IO in our example):

newtype MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) }

https://wiki.haskell.org/Monad_Transformers_Explained

MaybeT 

Maybe 
IO 
ST 
State s  

m 



Monad Transformer (3I) 28 Young Won Lim
7/27/18

https://wiki.haskell.org/Monad_Transformers_Explained

MaybeT 

types new types 

Maybe a  m  Maybe a
Maybe 
IO 
ST 
State s  

m 

newtype MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) }

a  m  a

types new types 



Monad Transformer (3I) 29 Young Won Lim
7/27/18

https://wiki.haskell.org/Monad_Transformers_Explained

MaybeT 

a  State s   a

types new types 

Maybe a  IO  Maybe a

newtype State s a = State { runState :: s -> (a, s) }

a  m  a

newtype MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) }



Monad Transformer (3I) 30 Young Won Lim
7/27/18

newtype MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) }

This data type definition specifies 
● a type constructor MaybeT 

● a parameter m, 

● a term (value) constructor MaybeT, 

● an accessor function runMaybeT, 

The whole point of monad transformers is 

that they transform monads into monads; 

and so we need to make MaybeT m 

an instance of the Monad class:

https://wiki.haskell.org/Monad_Transformers_Explained

MaybeT 



Monad Transformer (3I) 31 Young Won Lim
7/27/18

newtype MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) }

instance Monad m => Monad (MaybeT m) where

  return  = MaybeT . return . Just

  -- The signature of (>>=), specialized to MaybeT m:

  -- (>>=) :: MaybeT m a -> (a -> MaybeT m b) -> MaybeT m b

  x >>= f = MaybeT $ do maybe_value <- runMaybeT x

                      case maybe_value of

                           Nothing    -> return Nothing

                           Just value -> runMaybeT $ f value

https://wiki.haskell.org/Monad_Transformers_Explained

MaybeT 



Monad Transformer (3I) 32 Young Won Lim
7/27/18

return  = MaybeT . return . Just

It would also have been possible (though arguably less readable) 

to write the return function as: return  = MaybeT . return . return 

x >>= f = MaybeT $ do maybe_value <- runMaybeT x

First, the runMaybeT accessor unwraps x 

into an m (Maybe a) computation. 

That shows us that the whole do block is in m.

Still in the first line, <- extracts a Maybe a value 

from the unwrapped computation.

https://wiki.haskell.org/Monad_Transformers_Explained

MaybeT 



Monad Transformer (3I) 33 Young Won Lim
7/27/18

case maybe_value of

    Nothing    -> return Nothing

    Just value -> runMaybeT $ f value

The case statement tests maybe_value:

        With Nothing, we return Nothing into m;

        With Just, we apply f to the value from the f . 

Since f has MaybeT m b as result type, 

we need an extra runMaybeT 

to put the result back into the m monad.

Finally, the do block as a whole has m (Maybe b) type; 

so it is wrapped with the MaybeT constructor.

https://wiki.haskell.org/Monad_Transformers_Explained

MaybeT 



Monad Transformer (3I) 34 Young Won Lim
7/27/18

It may look a bit complicated; 

but aside from the copious amounts of wrapping and unwrapping, 

the implementation does the same 

as the familiar bind operator of Maybe:

-- (>>=) for the Maybe monad

maybe_value >>= f = case maybe_value of

                        Nothing -> Nothing

                        Just value -> f value

https://wiki.haskell.org/Monad_Transformers_Explained

MaybeT 



Monad Transformer (3I) 35 Young Won Lim
7/27/18

Why use the MaybeT constructor before the do block 

while we have the accessor runMaybeT within do? 

Well, the do block must be in the m monad, not in MaybeT m 

(which lacks a defined bind operator at this point).

Technically, this is all we need; however, 

it is convenient to make MaybeT m an instance of a few other classes:

https://wiki.haskell.org/Monad_Transformers_Explained

MaybeT 



Monad Transformer (3I) 36 Young Won Lim
7/27/18

instance Monad m => Alternative (MaybeT m) where

    empty   = MaybeT $ return Nothing

    x <|> y = MaybeT $ do maybe_value <- runMaybeT x

                          case maybe_value of

                               Nothing    -> runMaybeT y

                               Just _     -> return maybe_value

instance Monad m => MonadPlus (MaybeT m) where 

    mzero = empty

    mplus = (<|>)

instance MonadTrans MaybeT where

    lift = MaybeT . (liftM Just)

https://wiki.haskell.org/Monad_Transformers_Explained

MaybeT 



Monad Transformer (3I) 37 Young Won Lim
7/27/18

MonadTrans implements the lift function, 

so we can take functions from the m monad and 

bring them into the MaybeT m monad 

in order to use them in do blocks. 

As for Alternative and MonadPlus, 

since Maybe is an instance of those class it makes sense 

to make the MaybeT m an instance too.

https://wiki.haskell.org/Monad_Transformers_Explained

MaybeT 



Monad Transformer (3I) 38 Young Won Lim
7/27/18

getPassphrase :: IO (Maybe String)

getPassphrase = do s <- getLine

                   if isValid s then return $ Just s

                                else return Nothing

-- The validation test could be anything we want it to be.

isValid :: String -> Bool

isValid s = length s >= 8

            && any isAlpha s

            && any isNumber s

            && any isPunctuation s

https://en.wikibooks.org/wiki/Haskell/Monad_transformers

MaybeT 



Monad Transformer (3I) 39 Young Won Lim
7/27/18

askPassphrase :: IO ()

askPassphrase = do putStrLn "Insert your new passphrase:"

                   maybe_value <- getPassphrase

                   case maybe_value of

                       Just value -> do putStrLn "Storing in database..."  -- do stuff

                       Nothing -> putStrLn "Passphrase invalid."

https://en.wikibooks.org/wiki/Haskell/Monad_transformers

MaybeT 



Monad Transformer (3I) 40 Young Won Lim
7/27/18

askPassphrase :: IO ()

askPassphrase = do putStrLn "Insert your new passphrase:"

                   maybe_value <- getPassphrasegetPassphrase :: MaybeT IO String

getPassphrase = do s <- lift getLine

                   guard (isValid s) -- Alternative provides guard.

                   return s

askPassphrase :: MaybeT IO ()

askPassphrase = do lift $ putStrLn "Insert your new passphrase:"

                   value <- getPassphrase

                   lift $ putStrLn "Storing in database..."

                   case maybe_value of

                       Just value -> do putStrLn "Storing in database..."  -- do stuff

                       Nothing -> putStrLn "Passphrase invalid."

https://en.wikibooks.org/wiki/Haskell/Monad_transformers

MaybeT 



Monad Transformer (3I) 41 Young Won Lim
7/27/18

askPassphrase :: MaybeT IO ()

askPassphrase = do lift $ putStrLn "Insert your new passphrase:"

                 value <- msum $ repeat getPassphrase

                 lift $ putStrLn "Storing in database..."

https://en.wikibooks.org/wiki/Haskell/Monad_transformers

MaybeT 



Young Won Lim
7/27/18

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2]  https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

