

Contents

1 Freescale 68HC11 1
1.1 Architecture . 1
1.2 Implementations . 1
1.3 Other versions . 2
1.4 References . 2
1.5 External links . 2

2 Intel 8085 3
2.1 Description . 3

2.1.1 Programming model . 4
2.1.2 Commands/instructions . 4
2.1.3 Input/output scheme . 4
2.1.4 Development system . 5

2.2 Applications . 5
2.3 MCS-85 family . 5
2.4 Educational use . 6
2.5 Simulators . 6
2.6 See also . 6
2.7 References . 6
2.8 External links . 7

3 Intel 8086 8
3.1 History . 8

3.1.1 Background . 8
3.1.2 The first x86 design . 8

3.2 Details . 9
3.2.1 Buses and operation . 9
3.2.2 Registers and instructions . 9
3.2.3 Flags . 10
3.2.4 Segmentation . 10
3.2.5 Example code . 11
3.2.6 Performance . 12
3.2.7 Floating point . 12

i

ii CONTENTS

3.3 Chip versions . 12
3.3.1 Derivatives and clones . 12

3.4 Hardware modes . 13
3.5 Peripherals . 13
3.6 Microcomputers using the 8086 . 14
3.7 Notes . 14
3.8 See also . 14
3.9 References . 14
3.10 External links . 15

4 Intel MCS-51 16
4.1 Important features and applications . 16

4.1.1 Derivate features . 17
4.2 Memory architecture . 17
4.3 Registers . 18
4.4 Instruction set . 18
4.5 Programming . 19
4.6 Related processors . 20

4.6.1 Derivate vendors . 20
4.7 Use as intellectual property . 21
4.8 MCU based on 8051 . 22
4.9 Digital signal processor (DSP) variants . 22
4.10 Enhanced 8-bit binary compatible microcontroller: MCS-151 family 22
4.11 8/16/32-bit binary compatible microcontroller: MCS-251 family 22
4.12 See also . 22
4.13 References . 22
4.14 Further reading . 23
4.15 External links . 23

5 Motorola 6800 24
5.1 Motorola’s history in semiconductors . 24
5.2 Development team . 25
5.3 MC6800 microprocessor design . 26
5.4 MOS ICs . 27
5.5 M6800 family introduction . 28
5.6 Design team breakup . 28
5.7 Move to Austin . 29
5.8 Personal computers . 30
5.9 Example code . 31
5.10 Peripherals . 32
5.11 Second sources . 32
5.12 Oral histories . 32

CONTENTS iii

5.13 References . 32
5.14 External links . 35

6 PIC microcontroller 36
6.1 History . 37
6.2 Core architecture . 37

6.2.1 Data space (RAM) . 37
6.2.2 Code space . 38
6.2.3 Word size . 38
6.2.4 Stacks . 38
6.2.5 Instruction set . 38
6.2.6 Performance . 38
6.2.7 Advantages . 39
6.2.8 Limitations . 39
6.2.9 Compiler development . 39

6.3 Family core architectural differences . 39
6.3.1 Baseline core devices (12 bit) . 40
6.3.2 ELAN Microelectronics clones (13 bit) . 40
6.3.3 Mid-range core devices (14 bit) . 40
6.3.4 Enhanced mid-range core devices (14 bit) . 40
6.3.5 PIC17 high end core devices (16 bit) . 41
6.3.6 PIC18 high end core devices (8 bit) . 41
6.3.7 PIC24 and dsPIC 16-bit microcontrollers . 41
6.3.8 PIC32 32-bit microcontrollers . 42

6.4 Device variants and hardware features . 42
6.4.1 Variants . 43
6.4.2 Trends . 43
6.4.3 Part number suffixes . 43
6.4.4 PIC clones . 43

6.5 Development tools . 43
6.6 Device programmers . 43

6.6.1 PICKit 2 clones and open source . 44
6.7 Debugging . 44

6.7.1 Software emulation . 44
6.7.2 In-circuit debugging . 44
6.7.3 In-circuit emulators . 44

6.8 Operating systems . 45
6.9 See also . 45
6.10 References . 45
6.11 External links . 45

7 Pulse-width modulation 46

iv CONTENTS

7.1 History . 46
7.2 Principle . 47

7.2.1 Delta . 47
7.2.2 Delta-sigma . 47
7.2.3 Space vector modulation . 48
7.2.4 Direct torque control (DTC) . 48
7.2.5 Time proportioning . 48
7.2.6 Types . 48
7.2.7 Spectrum . 48
7.2.8 PWM sampling theorem . 49

7.3 Applications . 49
7.3.1 Servos . 49
7.3.2 Telecommunications . 49
7.3.3 Power delivery . 49
7.3.4 Voltage regulation . 50
7.3.5 Audio effects and amplification . 50
7.3.6 Electrical . 50

7.4 See also . 50
7.5 References . 51
7.6 External links . 51
7.7 Text and image sources, contributors, and licenses . 52

7.7.1 Text . 52
7.7.2 Images . 53
7.7.3 Content license . 55

Chapter 1

Freescale 68HC11

Motorola MC68HC11 in a 48-pin dual in-line package (DIP)

The 68HC11 (6811 or HC11 for short) is an 8-bit
microcontroller (µC) family introduced by Motorola in
1985.[1] Now produced by Freescale Semiconductor, it
descended from the Motorola 6800 microprocessor. It
is a CISC microcontroller. The 68HC11 devices are
more powerful and more expensive than the 68HC08
microcontrollers, and are used in barcode readers, ho-
tel card key writers, amateur robotics, and various other
embedded systems. The MC68HC11A8 was the first
MCU to include CMOS EEPROM.[2]

1.1 Architecture

Internally, the HC11 instruction set is upward compati-
ble with the 6800, with the addition of a Y index register.
(Instructions using the Y register have opcodes prefixed
with the byte 0x18). It has two eight-bit accumulators, A
and B, two sixteen-bit index registers, X and Y, a condi-
tion code register, a 16-bit stack pointer, and a program
counter. In addition, there is an 8 x 8-bit multiply (A x
B), with full 16-bit result, and Fractional/Integer 16-bit
by 16-bit Divide instructions. A range of 16-bit instruc-
tions treat the A and B registers as a combined 16-bit D
register for comparison (X and Y registers may also be
compared to 16-bit memory operands), addition, subtrac-
tion and shift operations, or can add the B accumulator
to the X or Y index registers. Bit test operations have
also been added, performing a logical AND function be-
tween operands, setting the correct conditions codes, but
not modifying the operands.
Different versions of the HC11 have different numbers of
external ports, labeled alphabetically. The most common

version has five ports, A, B, C, D, and E, but some have
as few as 3 ports (version D3). Each port is eight-bits
wide except for D, which is six bits (in some variations of
the chip, D also has eight bits). It can be operated with an
internal program and RAM (1 to 768 bytes) or an external
memory of up to 64 kilobytes. With external memory, B
and C are used as address and data bus. In this mode,
port C is multiplexed to carry both the lower byte of the
address and data.

1.2 Implementations

52-pin plastic leaded chip carrier (PLCC)

In the early 1990sMotorola produced an evaluation board
kit for the 68HC11 with several UARTs, RAM, and an
EPROM. The cost of the evaluation kit was $68.11.
The standard bootloader for the HC11 family is called
BUFFALO, “Bit User Fast Friendly Aid to Logical Op-
eration” (a BUFFALO prompt seen on the serial port at
bootup is a sign that a board’s flash memory has been
erased). Not all HC11 models come with the BUFFALO
bootloader. The 68HC11A0 and A1 do not but the A8
does.

1

https://en.wikipedia.org/wiki/Dual_in-line_package
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Freescale_Semiconductor
https://en.wikipedia.org/wiki/Motorola_6800
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Complex_instruction_set_computer
https://en.wikipedia.org/wiki/Freescale_68HC08
https://en.wikipedia.org/wiki/Barcode
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Motorola_6800
https://en.wikipedia.org/wiki/Index_register
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Hexadecimal
https://en.wikipedia.org/wiki/8-bit
https://en.wikipedia.org/wiki/Accumulator_(computing)
https://en.wikipedia.org/wiki/16-bit
https://en.wikipedia.org/wiki/Index_register
https://en.wikipedia.org/wiki/Stack_(data_structure)
https://en.wikipedia.org/wiki/Pointer_(computer_programming)
https://en.wikipedia.org/wiki/Program_counter
https://en.wikipedia.org/wiki/Program_counter
https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/Kilobyte
https://en.wikipedia.org/wiki/Address_bus
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/Time-division_multiplexing
https://en.wikipedia.org/wiki/Plastic_leaded_chip_carrier

2 CHAPTER 1. FREESCALE 68HC11

1.3 Other versions

The Freescale 68HC16 microcontroller family is in-
tended as a 16-bit mostly software compatible upgrade
of the 68HC11.
The Freescale 68HC12 microcontroller family is an en-
hanced 16-bit version of the 68HC11.
The Handy Board robotics controller by Fred Martin is
based on the 68HC11.[3]

A MC68HC24 port replacement unit is available for the
HC11. When placed on the external address bus, it repli-
cates the original functions of B and C. Port A has input
capture, output compare, pulse accumulator, and other
timer functions; port D has serial I/O, and port E has an
analog to digital converter (ADC).

1.4 References
[1] Hambley, Allan R.(1839). Electrical Engineering: Princi-

ples and Applications, Pearson Higher Education. p. 417.
Digitized by Google. Retrieved on May 17, 2010.

[2] M68HC11 Reference Manual

[3] Handy Board Hardware

1.5 External links
• Freescale 68HC11 (Legacy) Part Info

• Wytec 68HC11 Development Board

• A fully synthesizable VHDL implementation of the
HC11 CPU

• Digital Core Design 68HC11E - HDL IP Core

• Digital Core Design 68HC11F - HDL IP Core

• Digital Core Design 68HC11K - HDL IP Core

• Win/Linux-based freeware macro cross-assembler
(ASM11)

• 4MHz-bus 68HC11F1-based board

This article is based on material taken from the Free On-
line Dictionary of Computing prior to 1 November 2008
and incorporated under the “relicensing” terms of the
GFDL, version 1.3 or later.

https://en.wikipedia.org/wiki/Freescale_68HC16
https://en.wikipedia.org/wiki/16-bit
https://en.wikipedia.org/wiki/Freescale_68HC12
https://en.wikipedia.org/wiki/16-bit
https://en.wikipedia.org/wiki/Handy_Board
https://en.wikipedia.org/wiki/Analog_to_digital_converter
http://books.google.com/books?id=MtpIHCEVKacC&pg=PA417&lpg=PA417
http://books.google.com/books?id=MtpIHCEVKacC&pg=PA417&lpg=PA417
http://www.68bits.com/
http://www.handyboard.com/hardware/
http://www.freescale.com/webapp/sps/site/taxonomy.jsp?nodeId=01624684498635
http://www.evbplus.com/
http://www.gmvhdl.com/hc11core.html
http://www.gmvhdl.com/hc11core.html
http://www.dcd.pl/ipcore/90/d68hc11e/
http://www.dcd.pl/ipcore/89/d68hc11f/
http://www.dcd.pl/ipcore/88/d68hc11k/
http://www.aspisys.com/asm11.htm
http://www.aspisys.com/asm11.htm
http://www.aspisys.com/f1.htm
https://en.wikipedia.org/wiki/Free_On-line_Dictionary_of_Computing
https://en.wikipedia.org/wiki/Free_On-line_Dictionary_of_Computing
https://en.wikipedia.org/wiki/GNU_Free_Documentation_License

Chapter 2

Intel 8085

The Intel 8085 (extquotedbleighty-eighty-five extquot-
edbl) is an 8-bit microprocessor introduced by Intel in
1977. It was backward binary compatible with the more-
famous Intel 8080 (only adding a few minor instructions)
but required less supporting hardware, thus allowing sim-
pler and less expensive microcomputer systems to be
built.
The “5” in the model number came from the fact that the
8085 requires only a +5-Volt (V) power supply by using
depletion mode transistors, rather than requiring the +5
V, −5 V and +12 V supplies the 8080 needed. This is
similar to the competing Z80 (also 8080-derived) intro-
duced the year before. These processors were sometimes
used in computers running the CP/M operating system.
The Intel 8085 required at least an external ROM and
RAM and an 8 bit address latch (both latches com-
bined in the Intel 8755 2Kx8 EPROM / 2x8 I/O, In-
tel 8155 256-byte RAM and 22 I/O and 14 bit pro-
grammable Timer/Counter) so cannot technically be
called a microcontroller.
Both designs (8080/8085) were eclipsed for desktop
computers by the compatible Zilog Z80, which took over
most of the CP/M computer market as well as taking a
share of the booming home computer market in the early-
to-mid-1980s.
The 8085 had a long life as a controller. Once designed
into such products as the DECtape controller and the
VT100 video terminal in the late 1970s, it served for
new production throughout the life span of those products
(generally longer than the product life of desktop comput-
ers).

2.1 Description

The 8085 is a conventional von Neumann design based
on the Intel 8080. Unlike the 8080 it does not multi-
plex state signals onto the data bus, but the 8-bit data bus
was instead multiplexed with the lower part of the 16-bit
address bus to limit the number of pins to 40. Pin No.
40 is used for the power supply (+5 V) and pin No. 20
for ground. Pin No. 39 is used as the hold pin. Pins
No. 15 to No. 8 are generally used for address buses.

Intel 8085A CPU Die

Instruction
Register
(8 Bit)

Accumulator
(8 Bit)

Temp.
Register

ALU

Instruction
Decoder and

Machine
Cycle

Encoding

Timing and Control

8 Bit internal Data Bus

B Reg.
(8 Bit)

C Reg.
(8 Bit)

D Reg.
(8 Bit)

E Reg.
(8 Bit)

H Reg.
(8 Bit)

L Reg.
(8 Bit)

Stack Pointer
(16 Bit)

Program Counter
(16 Bit)

Incrementer/Decrementer
Address Latch

Address Buffer

A8-A15
Address Bus

Data/Address Buffer

A
D

0-
A

D
7

Serial I/O
ControlInterrupt Control

SODSIDTRAP
RST 7.5

RST 6.5
RST 5.5

INTA#
INTR

IO
/M

#

S0 S1

W
R

#

R
D

#

READY

X1
CLK
GEN

CONTROLSTATUS

Intel 8085 Microarchitecture

Flag Register
(8 Bit)

Multiplexer

R
eg

is
te

r

Address Bus (Low).
8 BitAddress Bus (High).

8 Bit

8 Bit

8 Bit

8 Bit

A0-A7
Address Bus

D0-D7
Data Bus

Address
LatchALE

RESET OUT
RESET IN#

RESET

HLDA
HOLD

DMA

Decoder

MEMR#
MEMW# IOW#

IOR#

X2

CLK OUT

i8085 microarchitecture.

The processor was designed using nMOS circuitry and the
later “H” versions were implemented in Intel’s enhanced
nMOS process called HMOS, originally developed for
fast static RAM products. Only a 5 volt supply is needed,
like competing processors and unlike the 8080. The 8085
uses approximately 6,500 transistors.[1]

The 8085 incorporates the functions of the 8224 (clock
generator) and the 8228 (system controller), increasing
the level of integration. A downside compared to simi-
lar contemporary designs (such as the Z80) was the fact

3

https://en.wikipedia.org/wiki/8-bit
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Binary_code_compatibility
https://en.wikipedia.org/wiki/Intel_8080
https://en.wikipedia.org/wiki/Microcomputer
https://en.wikipedia.org/wiki/Volt
https://en.wikipedia.org/wiki/Depletion-load_NMOS_logic
https://en.wikipedia.org/wiki/Z80
https://en.wikipedia.org/wiki/CP/M_operating_system
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Zilog_Z80
https://en.wikipedia.org/wiki/Home_computer
https://en.wikipedia.org/wiki/DECtape
https://en.wikipedia.org/wiki/VT100
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/Address_bus
https://en.wikipedia.org/wiki/NMOS_logic
https://en.wikipedia.org/wiki/Transistor

4 CHAPTER 2. INTEL 8085

that the buses required demultiplexing; however, address
latches in the Intel 8155, 8355, and 8755 memory chips
allowed a direct interface, so an 8085 along with these
chips was almost a complete system.
The 8085 has extensions to support new interrupts, with
three maskable interrupts (RST 7.5, RST 6.5 and RST
5.5), one non-maskable interrupt (TRAP), and one exter-
nally serviced interrupt (INTR). The RST n.5 interrupts
refer to actual pins on the processor, a feature which per-
mitted simple systems to avoid the cost of a separate in-
terrupt controller.
Like the 8080, the 8085 can accommodate slower mem-
ories through externally generated wait states (pin 35,
READY), and has provisions for Direct Memory Access
(DMA) using HOLD andHLDA signals (pins 39 and 38).
An improvement over the 8080 was that the 8085 can
itself drive a piezoelectric crystal directly connected to
it, and a built in clock generator generates the internal
high amplitude two-phase clock signals at half the crystal
frequency (a 6.14 MHz crystal would yield a 3.07 MHz
clock, for instance).
The 8085 is a binary compatible follow up on the 8080,
using the same basic instruction set as the 8080. Only a
few minor instructions were new to the 8085 above the
8080 set.

2.1.1 Programming model

The processor has seven 8-bit registers accessible to the
programmer, named A, B, C, D, E, H, and L, where A is
the 8-bit accumulator and the other six can be used as in-
dependent byte-registers or as three 16-bit register pairs,
BC, DE, and HL, depending on the particular instruction.
Some instructions use HL as a (limited) 16-bit accumula-
tor. As in the 8080, the contents of the memory address
pointed to by HL could be accessed as pseudo register M.
It also has a 16-bit program counter and a 16-bit stack
pointer to memory (replacing the 8008’s internal stack).
Instructions such as PUSH PSW, POP PSW affected the
Program Status Word (Accumulator and Flags).

2.1.2 Commands/instructions

As in many other 8-bit processors, all instructions are en-
coded in a single byte (including register-numbers, but
excluding immediate data), for simplicity. Some of them
are followed by one or two bytes of data, which could
be an immediate operand, a memory address, or a port
number. Like larger processors, it has CALL and RET
instructions for multi-level procedure calls and returns
(which can be conditionally executed, like jumps) and
instructions to save and restore any 16-bit register-pair
on the machine stack. There are also eight one-byte call
instructions (RST) for subroutines located at the fixed ad-
dresses 00h, 08h, 10h,...,38h. These were intended to be

supplied by external hardware in order to invoke a cor-
responding interrupt-service routine, but are also often
employed as fast system calls. The most sophisticated
command was XTHL, which is used for exchanging the
register pair HL with the value stored at the address indi-
cated by the stack pointer.

8-bit instructions

Most 8-bit operations work on the 8-bit accumulator (the
A register). For two operand 8-bit operations, the other
operand can be either an immediate value, another 8-bit
register, or a memory cell addressed by the 16-bit reg-
ister pair HL. Direct copying is supported between any
two 8-bit registers and between any 8-bit register and a
HL-addressed memory cell. Due to the regular encod-
ing of the MOV-instruction (using a quarter of available
opcode space) there are redundant codes to copy a reg-
ister into itself (MOV B,B, for instance), which are of
little use, except for delays. However, what would have
been a copy from the HL-addressed cell into itself (i.e.,
MOV M,M) instead encodes the HLT instruction, halt-
ing execution until an external reset or interrupt occurred
(providing interrupts were enabled).

16-bit operations

Although the 8085 is an 8-bit processor, it has some 16-
bit operations. Any of the three 16-bit register pairs (BC,
DE, HL or SP) could be loaded with an immediate 16-
bit value (using LXI), incremented or decremented (using
INX and DCX), or added to HL (using DAD). LHLD
loaded HL from directly-addressed memory and SHLD
stored HL likewise. The XCHG operation exchanges the
values of HL and DE. Adding HL to itself performs a 16-
bit arithmetical left shift with one instruction. The only
16 bit instruction that affects any flag was DAD (adding
HL to BC, DE, HL or SP), which updates the carry flag
to facilitate 24-bit or larger additions and left shifts (for
a floating point mantissa for instance). Adding the stack
pointer to HL is useful for indexing variables in (recur-
sive) stack frames. A stack frame can be allocated using
DAD SP and SPHL, and a branch to a computed pointer
can be done with PCHL. These abilities make it feasible
to compile languages such as PL/M, Pascal, or C with
16-bit variables and produce 8085 machine code.
Subtraction and bitwise logical operations on 16 bits is
done in 8-bit steps. Operations that have to be imple-
mented by program code (subroutine libraries) included
comparisons of signed integers as well as multiply and
divide.

2.1.3 Input/output scheme

The 8085 supported up to 256 input/output (I/O) ports,
accessed via dedicated Input/Output instructions—taking

https://en.wikipedia.org/wiki/Non-maskable_interrupt
https://en.wikipedia.org/wiki/Wait_state
https://en.wikipedia.org/wiki/Direct_Memory_Access
https://en.wikipedia.org/wiki/Piezoelectric_crystal
https://en.wikipedia.org/wiki/Two-phase_clock
https://en.wikipedia.org/wiki/Binary_compatible
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Program_counter
https://en.wikipedia.org/wiki/Stack-based_memory_allocation
https://en.wikipedia.org/wiki/Stack-based_memory_allocation
https://en.wikipedia.org/wiki/Stack_(data_structure)
https://en.wikipedia.org/wiki/Accumulator_(computing)
https://en.wikipedia.org/wiki/HLT
https://en.wikipedia.org/wiki/Floating_point
https://en.wikipedia.org/wiki/Mantissa_of_a_floating_point_number
https://en.wikipedia.org/wiki/PL/M
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Input/output

2.3. MCS-85 FAMILY 5

port addresses as operands. This Input/Output mapping
scheme was regarded as an advantage, as it freed up the
processor’s limited address space.

2.1.4 Development system

Intel produced a series of development systems for the
8080 and 8085, known as the MDS-80 Microprocessor
System. The original development system had an 8080
processor. Later 8085 and 8086 support was added in-
cluding ICE (in-circuit emulators). It was a large and
heavy desktop box, about a 20” cube (in the Intel cor-
porate blue colour) which included a CPU, monitor, and
a single 8 inch floppy disk drive. Later an external box
was available with two more floppy drives. It ran the ISIS
operating system and could also operate an emulator pod
and an external EPROM programmer. This unit used the
Multibus card cage which was intended just for the devel-
opment system. A surprising number of spare card cages
and processors were being sold, leading to the develop-
ment of the Multibus as a separate product .
The later iPDS was a portable unit, about 8” x 16” x 20”,
with a handle. It had a small green screen, a keyboard
built into the top, a 5¼ inch floppy disk drive, and ran
the ISIS-II operating system. It could also accept a sec-
ond 8085 processor, allowing a limited form of multi-
processor operation where both processors ran simultane-
ously and independently. The screen and keyboard could
be switched between them, allowing programs to be as-
sembled on one processor (large programs took awhile)
while files were edited in the other. It had a bubble mem-
ory option and various programming modules, including
EPROM and Intel 8048 and 8051 programming modules
which were plugged into the side, replacing stand-alone
device programmers. In addition to an 8080/8085 as-
sembler, Intel produced a number of compilers including
PL/M-80 and Pascal languages, and a set of tools for link-
ing and statically locating programs to enable them to be
burnt into EPROMs and used in embedded systems.
A lower cost SDK-85 System Design Kit board was pro-
vided with an 8085 CPU, 8355 ROM containing a de-
bugging monitor program, 8155 RAM and 22 I/O, 8279
hex keypad and 8-digit 7-segment LED, TTY (Teletype)
20 mA current loop serial interface. Pads were avail-
able for one more 2Kx8 8755 EPROM and another 256
byte RAM 8155 I/O Timer/Counter could be optionally
added. All data, control and address signals were avail-
able on dual pin headers and a large prototype area was
provided.

2.2 Applications

For the extensive use of 8085 in various applications, the
microprocessor is provided with an instruction set which
consists of various instructions such as MOV, ADD,

SUB, JMP, etc. These instructions are written in the form
of a program which is used to perform various operations
such as branching, addition, subtraction, bitwise logical
and bit shift operations. More complex operations and
other arithmetic operations must be implemented in soft-
ware. For example, multiplication is implemented using
a multiplication algorithm.
The 8085 processor was used in a few early personal com-
puters, for example, the TRS-80 Model 100 line used
an OKI manufactured 80C85 (MSM80C85ARS). The
CMOS version 80C85 of the NMOS/HMOS 8085 pro-
cessor has several manufacturers. Some manufacturers
provide variants with additional functions such as addi-
tional instructions. The rad-hard version of the 8085 has
been in on-board instrument data processors for several
NASA and ESA space physics missions in the 1990s and
early 2000s, including CRRES, Polar, FAST, Cluster,
HESSI, the Sojourner Mars Rover,[2] and THEMIS. The
Swiss company SAIA used the 8085 and the 8085-2 as
the CPUs of their PCA1 line of programmable logic con-
trollers during the 1980s.
Pro-Log Corp. put the 8085 and supporting hardware on
an STD Bus format card containing CPU, RAM, sock-
ets for ROM/EPROM, I/O and external bus interfaces.
The included Instruction Set Reference Card used en-
tirely different mnemonics for the Intel 8085 CPU, as the
product was a direct competitor to Intel’s Multibus card
offerings.

2.3 MCS-85 family

The 8085 CPU was one part of a family of chips de-
veloped by Intel, for building a complete system. Many
of these support chips were also used with other pro-
cessors. The original IBM PC based on the Intel 8088
processor used several of these chips; the equivalent
functions today are provided by VLSI chips, namely the
extquotedblSouthbridge extquotedbl chips.

• 8085-CPU

• 8155-RAM+ 3 I/O Ports+Timer

• 8156-RAM+ 3 I/O Ports+Timer

• 8185-SRAM

• 8355-16,384-bit (2048 x 8) ROM with I/O

• 8604-4096-bit (512 x 8) PROM

• 8755-EPROM+2 I/O Ports

• 8202-Dynamic RAM Controller

• 8203-Dynamic RAM Controller

• 8205-1 Of 8 Binary Decoder

https://en.wikipedia.org/wiki/In-circuit_emulator
https://en.wikipedia.org/wiki/ISIS_(operating_system)
https://en.wikipedia.org/wiki/Emulator
https://en.wikipedia.org/wiki/EPROM
https://en.wikipedia.org/wiki/PL/M
https://en.wikipedia.org/wiki/Pascal_programming_language
https://en.wikipedia.org/wiki/EPROM
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Bitwise_operation
https://en.wikipedia.org/wiki/Bit_shifting
https://en.wikipedia.org/wiki/Multiplication_algorithm
https://en.wikipedia.org/wiki/TRS-80_Model_100_line
https://en.wikipedia.org/wiki/CMOS
https://en.wikipedia.org/wiki/Rad-hard
https://en.wikipedia.org/wiki/NASA
https://en.wikipedia.org/wiki/ESA
https://en.wikipedia.org/wiki/CRRES
https://en.wikipedia.org/wiki/Polar_(satellite)
https://en.wikipedia.org/wiki/FAST_(satellite)
https://en.wikipedia.org/wiki/Cluster_(satellite)
https://en.wikipedia.org/wiki/HESSI
https://en.wikipedia.org/wiki/Mars_Pathfinder
https://en.wikipedia.org/wiki/THEMIS_(satellite)
https://en.wikipedia.org/wiki/Programmable_logic_controller
https://en.wikipedia.org/wiki/Programmable_logic_controller
https://en.wikipedia.org/wiki/Multibus
https://en.wikipedia.org/wiki/Intel_8088
https://en.wikipedia.org/wiki/Very-large-scale_integration
https://en.wikipedia.org/wiki/Southbridge_(computing)

6 CHAPTER 2. INTEL 8085

• 8206-Error Detection & Correction Unit

• 8207-DRAM Controller

• 8210-TTL To MOS Shifter & High Voltage Clock
Driver

• 8212-8 Bit I/O Port

• 8216-4 Bit Parallel Bidirectional Bus Driver

• 8218/8219-Bus Controller

• 8226-4 Bit Parallel Bidirectional Bus Driver

• 8231-Arithmetic Processing Unit

• 8232-Floating Point Processor

• 8237-DMA Controller

• 8251-Communication Controller

• 8253-Programmable Interval Timer

• 8254-Programmable Interval Timer

• 8255-Programmable Peripheral Interface

• 8256-Multifunction Support Controller

• 8257-DMA Controller

• 8259-Programmable Interrupt Controller

• 8271-Programmable Floppy Disk Controller

• 8272-Single/Double Density Floppy Disk Con-
troller

• 8273-Programmable HDLC/SDLC Protocol Con-
troller

• 8274-Multi-Protocol Serial Controller

• 8275-CRT Controller

• 8276-Small System CRT Controller

• 8275-Programmable Key Board Interface

• 8279-Key Board/Display Controller

• 8282−8-bit Non-Inverting Latch with Output
Buffer

• 8283−8-bit Inverting Latch with Output Buffer

• 8291-GPIB Talker/Listener

• 8293-GPIB Transceiver

• 8294-Data Encryption/Decryption Unit+1 O/P Port

• 8295-Dot Matrix Printer Controller

2.4 Educational use

In many engineering schools[3] [4]the 8085 processor is
used in introductory microprocessor courses. Trainer kits
composed of a printed circuit board, 8085, and support-
ing hardware are offered by various companies. These
kits usually include complete documentation allowing a
student to go from solder to assembly language program-
ming in a single course. Also the architecture of this and
the associated instruction set is easy for a student to un-
derstand.

2.5 Simulators

Some of the simulators available for the 8085 micropro-
cessor are listed below:

• GNUSim8085 - It consists of a simulator, assembler
and a debugger. It is available for bothWindows and
Linux operating systems.

• Win85 - Open source (under the MIT license) sim-
ulator/debugger for Windows [5]

• 8085 simulator - It includes a simulated keypad, an
assembler and a simulator.

• Intel 8085 Simulator for Android. [6]

• ENVI85 - It was written by professors Stefan
Fedyschyn and Edwin Kay. This and the above sim-
ulator are provided on the CD that accompanies
the book, Microprocessor Architecture, Program-
ming and Applications with the 8085 by Ramesh
Gaonkar.

2.6 See also
• GNUSim8085 – An open source multi-platform
simulator software for the 8085 processor.

• IBM System/23 Datamaster gave IBM designers fa-
miliarity with the 8085 support chips used in the
IBM PC

2.7 References
[1] The history of the microcomputer-invention and evolu-

tion, S Mazor - Proceedings of the IEEE, 1995

[2] A Description of the Rover Sojourner

[3]

[4] Микропроцесорски системи

[5] Win85 project homepage

https://en.wikipedia.org/wiki/Intel_8237
https://en.wikipedia.org/wiki/Intel_8251
https://en.wikipedia.org/wiki/Intel_8253
https://en.wikipedia.org/wiki/Programmable_Interval_Timer
https://en.wikipedia.org/wiki/Intel_8255
https://en.wikipedia.org/wiki/Intel_8257
https://en.wikipedia.org/wiki/Intel_8259
https://en.wikipedia.org/wiki/Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/NEC_µPD765
https://en.wikipedia.org/wiki/Intel_8279
https://en.wikipedia.org/wiki/Intel_8282
https://en.wikipedia.org/wiki/Intel_8283
https://en.wikipedia.org/wiki/GNUSim8085
https://en.wikipedia.org/wiki/Win85
https://play.google.com/store/apps/details?id=mp.project.intel8085simulator
https://en.wikipedia.org/wiki/GNUSim8085
https://en.wikipedia.org/wiki/IBM_System/23
https://en.wikipedia.org/wiki/IBM_PC
http://mars.jpl.nasa.gov/MPF/rover/descrip.html
http://feit.ukim.edu.mk/fakultet/fajlovi_pocetna/ksia_6_2_mikroprocsorski_sistemi.pdf
http://pythagoras.physics.upatras.gr/~gmanol

2.8. EXTERNAL LINKS 7

[6]

• William Stallings Computer Organization and Ar-
chitecture: Designing for Performance 8th Ed. Pren-
tice Hall, 2009 ISBN 0-13-607373-5

• Abhishek Yadav Microprocessor 8085, 8086 Fire-
wall Media, 2008 ISBN 81-318-0356-2

• Ramesh Gaonkar Microprocessor Architecture, Pro-
gramming and Applications with the 8085 Penram
International Publishing ISBN 81-87972-09-2

• Bill Detwiler Tandy TRS-80 Model 100 Teardown
Tech Republic, 2011 Web

2.8 External links
• Pin diagram and pin description of 8085

• Function of IC’s Used in 8085 Microprocessor

https://en.wikipedia.org/wiki/Special:BookSources/0136073735
https://en.wikipedia.org/wiki/Special:BookSources/8131803562
https://en.wikipedia.org/wiki/Special:BookSources/8187972092
http://scanftree.com/microprocessor/Pin-Diagram-of-8085-and-Pin-description-of-8085
http://studentstudyhub.com/functions-ics-used-8085-microprocessor

Chapter 3

Intel 8086

The 8086[1] (extquotedbleighty-eighty-six extquotedbl,
also called iAPX 86)[2] is a 16-bit microprocessor chip
designed by Intel between early 1976 and mid-1978,
when it was released. The Intel 8088, released in 1979,
was a slightly modified chip with an external 8-bit data
bus (allowing the use of cheaper and fewer supporting
ICs[note 1]), and is notable as the processor used in the
original IBM PC design, including the widespread ver-
sion called IBM PC XT.
The 8086 gave rise to the x86 architecture which eventu-
ally turned out as Intel’s most successful line of proces-
sors.

3.1 History

3.1.1 Background

In 1972, Intel launched the 8008, the first 8-bit
microprocessor.[note 2] It implemented an instruction set
designed by Datapoint corporation with programmable
CRT terminals in mind, that also proved to be fairly gen-
eral purpose. The device needed several additional ICs
to produce a functional computer, in part due to it be-
ing packaged in a small 18-pin “memory-package”, which
ruled out the use of a separate address bus (Intel was pri-
marily a DRAM manufacturer at the time).
Two years later, Intel launched the 8080,[note 3] employ-
ing the new 40-pin DIL packages originally developed for
calculator ICs to enable a separate address bus. It had
an extended instruction set that was source- (not binary-)
compatible with the 8008 and also included some 16-bit
instructions to make programming easier. The 8080 de-
vice, often described as the first truly useful microproces-
sor, was eventually replaced by the depletion-load based
8085 (1977) which could cope with a single 5V power
supply instead of the three different operating voltages of
earlier chips.[note 4] Other well known 8-bit microproces-
sors that emerged during these years were Motorola 6800
(1974), General Instrument PIC16X (1975), MOS Tech-
nology 6502 (1975), Zilog Z80 (1976), and Motorola
6809 (1978).

3.1.2 The first x86 design

Intel 8086 CPU Die Image

The 8086 project started in May 1976 and was originally
intended as a temporary substitute for the ambitious and
delayed iAPX 432 project. It was an attempt to draw
attention from the less-delayed 16 and 32-bit processors
of other manufacturers (such as Motorola, Zilog, and
National Semiconductor) and at the same time to counter
the threat from the Zilog Z80 (designed by former In-
tel employees), which became very successful. Both the
architecture and the physical chip were therefore devel-
oped rather quickly by a small group of people, and using
the same basic microarchitecture elements and physical
implementation techniques as employed for the slightly
older 8085 (and for which the 8086 also would function
as a continuation).
Marketed as source compatible, the 8086 was designed to
allow assembly language for the 8008, 8080, or 8085 to
be automatically converted into equivalent (sub-optimal)
8086 source code, with little or no hand-editing. The pro-
gramming model and instruction set was (loosely) based
on the 8080 in order to make this possible. However, the
8086 design was expanded to support full 16-bit process-
ing, instead of the fairly basic 16-bit capabilities of the
8080/8085.

8

https://en.wikipedia.org/wiki/16-bit
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Intel_8088
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/IBM_PC
https://en.wikipedia.org/wiki/IBM_PC_XT
https://en.wikipedia.org/wiki/X86_architecture
https://en.wikipedia.org/wiki/Intel_8008
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Datapoint
https://en.wikipedia.org/wiki/Computer_terminal
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/DRAM
https://en.wikipedia.org/wiki/Intel_8080
https://en.wikipedia.org/wiki/Dual_in-line_package
https://en.wikipedia.org/wiki/Calculator
https://en.wikipedia.org/wiki/Source_compatible
https://en.wikipedia.org/wiki/Binary_compatible
https://en.wikipedia.org/wiki/16-bit_instructions
https://en.wikipedia.org/wiki/16-bit_instructions
https://en.wikipedia.org/wiki/Depletion-load_NMOS_logic
https://en.wikipedia.org/wiki/Intel_8085
https://en.wikipedia.org/wiki/Motorola_6800
https://en.wikipedia.org/wiki/PIC_microcontroller
https://en.wikipedia.org/wiki/MOS_Technology_6502
https://en.wikipedia.org/wiki/MOS_Technology_6502
https://en.wikipedia.org/wiki/Zilog_Z80
https://en.wikipedia.org/wiki/Motorola_6809
https://en.wikipedia.org/wiki/Motorola_6809
https://en.wikipedia.org/wiki/IAPX_432
https://en.wikipedia.org/wiki/Motorola
https://en.wikipedia.org/wiki/Zilog
https://en.wikipedia.org/wiki/National_Semiconductor
https://en.wikipedia.org/wiki/Zilog_Z80
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Intel_8085
https://en.wikipedia.org/wiki/Source_code_compatibility
https://en.wikipedia.org/wiki/Assembly_language

3.2. DETAILS 9

New kinds of instructions were added as well; full sup-
port for signed integers, base+offset addressing, and self-
repeating operations were akin to the Z80 design[3] but
were all made slightly more general in the 8086. In-
structions directly supporting nested ALGOL-family lan-
guages such as Pascal and PL/M were also added. Ac-
cording to principal architect Stephen P. Morse, this was
a result of a more software centric approach than in the
design of earlier Intel processors (the designers had expe-
rience working with compiler implementations). Other
enhancements included microcoded multiply and divide
instructions and a bus-structure better adapted to future
co-processors (such as 8087 and 8089) and multiproces-
sor systems.
The first revision of the instruction set and high level
architecture was ready after about three months,[note 5]
and as almost no CAD-tools were used, four engineers
and 12 layout people were simultaneously working on
the chip.[note 6] The 8086 took a little more than two
years from idea to working product, which was consid-
ered rather fast for a complex design in 1976–1978.
The 8086 was sequenced[note 7] using a mixture of
random logic[4] and microcode and was implemented us-
ing depletion-load nMOS circuitry with approximately
20,000 active transistors (29,000 counting all ROM and
PLA sites). It was soon moved to a new refined nMOS
manufacturing process called HMOS (for High perfor-
mance MOS) that Intel originally developed for manu-
facturing of fast static RAM products.[note 8] This was fol-
lowed by HMOS-II, HMOS-III versions, and, eventually,
a fully static CMOS version for battery-powered devices,
manufactured using Intel’s CHMOS processes.[note 9] The
original chipmeasured 33mm² andminimum feature size
was 3.2 μm.
The architecture was defined by Stephen P. Morse with
some help and assistance by Bruce Ravenel (the architect
of the 8087) in refining the final revisions. Logic designer
JimMcKevitt and John Bayliss were the lead engineers of
the hardware-level development team[note 10] and William
Pohlman the manager for the project. The legacy of the
8086 is enduring in the basic instruction set of today’s
personal computers and servers; the 8086 also lent its last
two digits to later extended versions of the design, such
as the Intel 286 and the Intel 386, all of which eventually
became known as the x86 family. (Another reference is
that the PCI Vendor ID for Intel devices is 8086⛷.)

3.2 Details

3.2.1 Buses and operation

All internal registers, as well as internal and external data
buses, were 16 bits wide, firmly establishing the “16-bit
microprocessor” identity of the 8086. A 20-bit external
address bus gave a 1 MB physical address space (220 =

The 8086 pin-assignments in min and max mode

1,048,576). This address space was addressed by means
of internal 'segmentation'. The data bus was multiplexed
with the address bus in order to fit a standard 40-pin dual
in-line package. 16-bit I/O addresses meant 64 KB of
separate I/O space (216 = 65,536). The maximum linear
address space was limited to 64 KB, simply because inter-
nal registers were only 16 bits wide. Programming over
64 KB boundaries involved adjusting segment registers
(see below) and remained so until the 80386 introduced
wider (32 bits) main registers (the memory management
hardware in the 286 did not help in this regard, as regis-
ters were still 16 bits).
Some of the control pins, which carry essential signals
for all external operations, had more than one function
depending upon whether the device was operated in min
or max mode. The former was intended for small sin-
gle processor systems while the latter was for medium or
large systems, using more than one processor.

3.2.2 Registers and instructions

The 8086 has eight more or less general 16-bit registers
(including the stack pointer but excluding the instruc-
tion pointer, flag register and segment registers). Four of
them, AX, BX, CX, DX, could also be accessed as twice

https://en.wikipedia.org/wiki/Z80
https://en.wikipedia.org/wiki/Nested_function
https://en.wikipedia.org/wiki/ALGOL
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://en.wikipedia.org/wiki/PL/M
https://en.wikipedia.org/wiki/Stephen_P._Morse
https://en.wikipedia.org/wiki/Microcode
https://en.wikipedia.org/wiki/Intel_8087
https://en.wikipedia.org/wiki/Intel_8089
https://en.wikipedia.org/wiki/Random_logic
https://en.wikipedia.org/wiki/Microcode
https://en.wikipedia.org/wiki/Transistor
https://en.wikipedia.org/wiki/Read_only_memory
https://en.wikipedia.org/wiki/Programmable_logic_array
https://en.wikipedia.org/wiki/HMOS
https://en.wikipedia.org/wiki/Static_RAM
https://en.wikipedia.org/wiki/CMOS
https://en.wikipedia.org/wiki/CHMOS
https://en.wikipedia.org/wiki/Stephen_P._Morse
https://en.wikipedia.org/wiki/Intel_286
https://en.wikipedia.org/wiki/Intel_386
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/PCI_Configuration_Space
https://en.wikipedia.org/wiki/Megabyte
https://en.wikipedia.org/wiki/Multiplexed
https://en.wikipedia.org/wiki/Dual_in-line_package
https://en.wikipedia.org/wiki/Dual_in-line_package
https://en.wikipedia.org/wiki/Kilobyte
https://en.wikipedia.org/wiki/80386
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Stack-based_memory_allocation

10 CHAPTER 3. INTEL 8086

as many 8-bit registers (see figure) while the other four,
BP, SI, DI, SP, were 16-bit only.
Due to a compact encoding inspired by 8-bit processors,
most instructions were one-address or two-address oper-
ations which means that the result was stored in one of the
operands. At most one of the operands could be in mem-
ory, but this memory operand could also be the destina-
tion, while the other operand, the source, could be either
register or immediate. A single memory location could
also often be used as both source and destination which,
among other factors, further contributed to a code den-
sity comparable to (and often better than) most eight bit
machines.
Although the degree of generality of most registers
were much greater than in the 8080 or 8085, it was
still fairly low compared to the typical contemporary
minicomputer, and registers were also sometimes used
implicitly by instructions. While perfectly sensible for
the assembly programmer, this made register allocation
for compilers more complicated compared to more regu-
lar 16- and 32-bit processors such as the PDP-11, VAX,
68000, 32016 etc. On the other hand, it was more regu-
lar and orthogonal than ubiquitous but rather minimalis-
tic 8-bit microprocessors such as the 6502, 6800, 6809,
8085, MCS-48, 8051 and other contemporary accumu-
lator based machines. It was significantly easier to con-
struct an efficient code generator for the 8086 design.
Another factor for this was that the 8086 also introduced
some new instructions (not present in the 8080 and 8085)
to better support stack based high level programming lan-
guages such as Pascal and PL/M; some of the more use-
ful ones were push mem-op, and ret size, supporting the
“pascal calling convention extquotedbl directly. (Several
others, such as push immed and enter, would be added
in the subsequent 80186, 80286, and 80386 processors.)
The 8086 had a 64 KB of 8-bit (or alternatively 32 K-
word of 16-bit) I/O space. A 64 KB (one segment)
stack growing towards lower addresses is supported in
hardware; 2-byte words are pushed to the stack and the
stack top is pointed to by SS:SP. There are 256 interrupts,
which can be invoked by both hardware and software.
The interrupts can cascade, using the stack to store the
return addresses.

3.2.3 Flags

8086 has a 16-bit flags register. Nine of these condition
code flags are active, and indicate the current state of the
processor: Carry flag (CF), Parity flag (PF), Auxiliary
carry flag (AF), Zero flag (ZF), Sign flag (SF), Trap
flag (TF), Interrupt flag (IF), Direction flag (DF), and
Overflow flag (OF).

3.2.4 Segmentation

See also: x86 memory segmentation

There are also four 16-bit segment registers (see figure)
that allow the 8086 CPU to access onemegabyte of mem-
ory in an unusual way. Rather than concatenating the seg-
ment register with the address register, as in most proces-
sors whose address space exceeded their register size, the
8086 shifts the 16-bit segment only four bits left before
adding it to the 16-bit offset (16×segment + offset), there-
fore producing a 20-bit external (or effective or physical)
address from the 32-bit segment:offset pair. As a result,
each external address can be referred to by 212 = 4096
different segment:offset pairs.
Although considered complicated and cumbersome by
many programmers, this scheme also has advantages; a
small program (less than 64 KB) can be loaded starting at
a fixed offset (such as 0000) in its own segment, avoiding
the need for relocation, with at most 15 bytes of alignment
waste.
Compilers for the 8086-family commonly support two
types of pointer, near and far. Near pointers are 16-bit
offsets implicitly associated with the program’s code or
data segment and so can be used only within parts of a
program small enough to fit in one segment. Far pointers
are 32-bit segment:offset pairs resolving to 20-bit exter-
nal addresses. Some compilers also support huge point-
ers, which are like far pointers except that pointer arith-
metic on a huge pointer treats it as a linear 20-bit pointer,
while pointer arithmetic on a far pointer wraps around
within its 16-bit offset without touching the segment part
of the address.
To avoid the need to specify near and far on numerous
pointers, data structures, and functions, compilers also
support “memory models” which specify default pointer
sizes. The tiny (max 64K), small (max 128K), compact
(data > 64K), medium (code > 64K), large (code,data >
64K), and huge (individual arrays > 64K) models cover
practical combinations of near, far, and huge pointers for
code and data. The tiny model means that code and data
are shared in a single segment, just as in most 8-bit based
processors, and can be used to build .com-files for in-
stance. Precompiled libraries often came in several ver-
sions compiled for different memory models.
According to Morse et al., the designers actually contem-
plated using an 8-bit shift (instead of 4-bit), in order to
create a 16 MB physical address space. However, as this
would have forced segments to begin on 256-byte bound-
aries, and 1 MB was considered very large for a micro-
processor around 1976, the idea was dismissed. Also,
there were not enough pins available on a low-cost 40-pin
package for the additional four address bus pins.[5]

In principle, the address space of the x86 series could
have been extended in later processors by increasing the
shift value, as long as applications obtained their seg-

https://en.wikipedia.org/wiki/Code_density
https://en.wikipedia.org/wiki/Code_density
https://en.wikipedia.org/wiki/Minicomputer
https://en.wikipedia.org/wiki/PDP-11
https://en.wikipedia.org/wiki/VAX
https://en.wikipedia.org/wiki/68000
https://en.wikipedia.org/wiki/32016
https://en.wikipedia.org/wiki/MOS_Technology_6502
https://en.wikipedia.org/wiki/Motorola_6800
https://en.wikipedia.org/wiki/6809
https://en.wikipedia.org/wiki/Intel_8085
https://en.wikipedia.org/wiki/MCS-48
https://en.wikipedia.org/wiki/Intel_8051
https://en.wikipedia.org/wiki/Code_generator
https://en.wikipedia.org/wiki/PL/M
https://en.wikipedia.org/wiki/Calling_convention
https://en.wikipedia.org/wiki/I/O
https://en.wikipedia.org/wiki/Stack_(data_structure)
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Return_address
https://en.wikipedia.org/wiki/Status_register
https://en.wikipedia.org/wiki/Carry_flag
https://en.wikipedia.org/wiki/Parity_flag
https://en.wikipedia.org/wiki/Auxiliary_flag
https://en.wikipedia.org/wiki/Auxiliary_flag
https://en.wikipedia.org/wiki/Zero_flag
https://en.wikipedia.org/wiki/Sign_flag
https://en.wikipedia.org/wiki/Trap_flag
https://en.wikipedia.org/wiki/Trap_flag
https://en.wikipedia.org/wiki/IF_(x86_flag)
https://en.wikipedia.org/wiki/Direction_flag
https://en.wikipedia.org/wiki/Overflow_flag
https://en.wikipedia.org/wiki/X86_memory_segmentation
https://en.wikipedia.org/wiki/X86_memory_segmentation
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Megabyte
https://en.wikipedia.org/wiki/Relocation_(computing)
https://en.wikipedia.org/wiki/Pointer_(computer_programming)
https://en.wikipedia.org/wiki/Pointer_arithmetic
https://en.wikipedia.org/wiki/Pointer_arithmetic
https://en.wikipedia.org/wiki/Integer_overflow
https://en.wikipedia.org/wiki/COM_file

3.2. DETAILS 11

ments from the operating system and did not make as-
sumptions about the equivalence of different segment:
offset pairs.[note 11] In practice the use of “huge” pointers
and similar mechanisms was widespread and the flat 32-
bit addressing made possible with the 32-bit offset regis-
ters in the 80386 eventually extended the limited address-
ing range in a more general way (see below).
Intel could have decided to implement memory in 16
bit words (which would have eliminated the BHE signal
along with much of the address bus complexities already
described). This would mean that all instruction object
codes and data would have to be accessed in 16-bit units.
Users of the 8080 long ago realised, in hindsight, that the
processor makes very efficient use of its memory. By
having a large number of 8-bit object codes, the 8080
produces object code as compact as some of the most
powerful minicomputers on the market at the time.[6]:5-26

If the 8086 is to retain 8-bit object codes and hence the
efficient memory use of the 8080, then it cannot guaran-
tee that (16-bit) opcodes and data will lie on an even-odd
byte address boundary. The first 8-bit opcode will shift
the next 8-bit instruction to an odd byte or a 16-bit in-
struction to an odd-even byte boundary. By implement-
ing the BHE signal and the extra logic needed, the 8086
has allowed instructions to exist as 1-byte, 3-byte or any
other odd byte object codes.[6]:5-26

Simply put: this is a trade off. If memory addressing is
simplified so that memory is only accessed in 16-bit units,
memory will be used less efficiently. Intel decided to
make the logic more complicated, but memory use more
efficient. This was at a time when memory size was con-
siderably smaller, and at a premium, than that which users
are used to today.[6]:5-26

Porting older software

Small programs could ignore the segmentation and just
use plain 16-bit addressing. This allowed 8-bit software
to be quite easily ported to the 8086. The authors of MS-
DOS took advantage of this by providing an Application
Programming Interface very similar to CP/M as well as
including the simple .com executable file format, iden-
tical to CP/M. This was important when the 8086 and
MS-DOS were new, because it allowed many existing
CP/M (and other) applications to be quickly made avail-
able, greatly easing acceptance of the new platform.

3.2.5 Example code

The following 8086/8088 assembler source code is for a
subroutine named _memcpy that copies a block of data
bytes of a given size from one location to another. The
data block is copied one byte at a time, and the datamove-
ment and looping logic utilizes 16-bit operations.
; _memcpy(dst, src, len) ; Copy a block of memory from

one location to another. ; ; Entry stack parameters ;
[BP+6] = len, Number of bytes to copy ; [BP+4] = src,
Address of source data block ; [BP+2] = dst, Address
of target data block ; ; Return registers ; AX = Zero
0000:1000 org 1000h ; Start at 0000:1000h 0000:1000
_memcpy proc 0000:1000 55 push bp ; Set up the call
frame 0000:1001 89 E5 mov bp,sp 0000:1003 06 push
es ; Save ES 0000:1004 8B 4E 06 mov cx,[bp+6] ;
Set CX = len 0000:1007 E3 11 jcxz done ; If len=0,
return 0000:1009 8B 76 04 mov si,[bp+4] ; Set SI =
src 0000:100C 8B 7E 02 mov di,[bp+2] ; Set DI = dst
0000:100F 1E push ds ; Set ES = DS 0000:1010 07 pop
es 0000:1011 8A 04 loop mov al,[si] ; Load AL from
[src] 0000:1013 88 05 mov [di],al ; Store AL to [dst]
0000:1015 46 inc si ; Increment src 0000:1016 47 inc
di ; Increment dst 0000:1017 49 dec cx ; Decrement len
0000:1018 75 F7 jnz loop ; Repeat the loop 0000:101A
07 done pop es ; Restore ES 0000:101B 5D pop bp ;
Restore previous call frame 0000:101C 29 C0 sub ax,ax
; Set AX = 0 0000:101E C3 ret ; Return 0000:101F end
proc

The code above uses the BP (base pointer) register to es-
tablish a call frame, an area on the stack that contains all
of the parameters and local variables for the execution of
the subroutine. This kind of calling convention supports
reentrant and recursive code, and has been used by most
ALGOL-like languages since the late 1950s. The ES seg-
ment register is saved on the stack and replaced with the
value of the DS segment register, so that the MOV AL
instructions will operate within the same source and des-
tination data segment. Before returning, the subroutine
restores the previous value of the ES register.
The above routine is a rather cumbersome way to copy
blocks of data. Provided the source and the destination
blocks reside within single 65,536 byte segments (a re-
quirement of the above routine), advantage can be taken
of the 8086’s block MOV instructions. The loop section
of the above can be replaced by:
0000:1011 F2 loop rep ; Repeat until CX=0 0000:1012
A5 movsw ; Move the data block

This copies the block of data one word at a time. The
REP instruction causes the following MOVSW to repeat
until CX=0, automatically incrementing SI and DI as it
repeats. Alternatively the MOVSB or MOVSD instruc-
tions can be used to copy single bytes or double words
at a time. Most assemblers will assemble correctly if the
REP instruction is used as a prefix to MOVSW as in REP
MOVSW.
This routine will operate correctly if interupted, because
the program counter will continue to point to the REP
instruction until the block copy is completed. The copy
will therefore continue from where it left off when the
interupt service routine returns control.

https://en.wikipedia.org/wiki/8080
https://en.wikipedia.org/wiki/8-bit
https://en.wikipedia.org/wiki/Application_Programming_Interface
https://en.wikipedia.org/wiki/Application_Programming_Interface
https://en.wikipedia.org/wiki/CP/M
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Call_frame
https://en.wikipedia.org/wiki/Calling_convention
https://en.wikipedia.org/wiki/Reentrancy_(computing)
https://en.wikipedia.org/wiki/Recursion_(computer_science)

12 CHAPTER 3. INTEL 8086

3.2.6 Performance

CS
DS
SS
ES
IP

AH AL AX
BH BL BX
CH CL CX
DH DL DX

SP
BP
SI
DI

F

1
2
3
4

1

2

3

4

5

7

6

8

9

10

11

12

Simplified block diagram over Intel 8088 (a variant of 8086);
1=main registers; 2=segment registers and IP; 3=address
adder; 4=internal address bus; 5=instruction queue; 6=con-
trol unit (very simplified!); 7=bus interface; 8=internal databus;
9=ALU; 10/11/12=external address/data/control bus.

Although partly shadowed by other design choices in this
particular chip, the multiplexed address and data buses
limited performance slightly; transfers of 16-bit or 8-bit
quantities were done in a four-clock memory access cy-
cle, which was faster on 16-bit, although slower on 8-bit
quantities, compared to many contemporary 8-bit based
CPUs. As instructions varied from one to six bytes, fetch
and execution were made concurrent and decoupled into
separate units (as it remains in today’s x86 processors):
The bus interface unit fed the instruction stream to the
execution unit through a 6-byte prefetch queue (a form
of loosely coupled pipelining), speeding up operations on
registers and immediates, while memory operations un-
fortunately became slower (four years later, this perfor-
mance problem was fixed with the 80186 and 80286).
However, the full (instead of partial) 16-bit architecture
with a full width ALU meant that 16-bit arithmetic in-
structions could now be performed with a single ALU
cycle (instead of two, via internal carry, as in the 8080
and 8085), speeding up such instructions considerably.
Combined with orthogonalizations of operations versus
operand-types and addressing modes, as well as other en-
hancements, this made the performance gain over the
8080 or 8085 fairly significant, despite cases where the
older chips may be faster (see below).

• EA = time to compute effective address, ranging
from 5 to 12 cycles.

• Timings are best case, depending on prefetch status,
instruction alignment, and other factors.

As can be seen from these tables, operations on regis-
ters and immediates were fast (between 2 and 4 cycles),
whilememory-operand instructions and jumpswere quite

slow; jumps took more cycles than on the simple 8080
and 8085, and the 8088 (used in the IBM PC) was addi-
tionally hampered by its narrower bus. The reasons why
most memory related instructions were slow were three-
fold:

• Loosely coupled fetch and execution units are effi-
cient for instruction prefetch, but not for jumps and
random data access (without special measures).

• No dedicated address calculation adder was af-
forded; the microcode routines had to use the main
ALU for this (although there was a dedicated seg-
ment + offset adder).

• The address and data buses were multiplexed, forc-
ing a slightly longer (33~50%) bus cycle than in typ-
ical contemporary 8-bit processors.

However, memory access performance was drastically
enhanced with Intel’s next generation chips. The 80186
and 80286 both had dedicated address calculation hard-
ware, saving many cycles, and the 80286 also had sepa-
rate (non-multiplexed) address and data buses.

3.2.7 Floating point

The 8086/8088 could be connected to a mathematical
coprocessor to add hardware/microcode-based floating
point performance. The Intel 8087 was the standardmath
coprocessor for the 8086 and 8088, operating on 80-bit
numbers. Manufacturers like Cyrix (8087-compatible)
and Weitek (non 8087-compatible) eventually came up
with high performance floating point co-processors that
competed with the 8087 as well as with the subsequent,
higher performing Intel 80387.

3.3 Chip versions

The clock frequency was originally limited to 5 MHz
(IBM PC used 4.77 MHz, 4/3 the standard NTSC color
burst frequency), but the last versions in HMOS were
specified for 10 MHz. HMOS-III and CMOS versions
were manufactured for a long time (at least a while into
the 1990s) for embedded systems, although its successor,
the 80186/80188 (which includes some on-chip periph-
erals), has been more popular for embedded use.
The 80C86, the CMOS version of the 8086, was used in
the GRiDPad, Toshiba T1200, HP 110, and finally the
1998-1999 Lunar Prospector.

3.3.1 Derivatives and clones

Compatible—and, in many cases, enhanced—versions
were manufactured by Fujitsu, Harris/Intersil, OKI,

https://en.wikipedia.org/wiki/Multiplexed
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/Concurrency_(computer_science)
https://en.wikipedia.org/wiki/Pipelining
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Operand
https://en.wikipedia.org/wiki/80186
https://en.wikipedia.org/wiki/80286
https://en.wikipedia.org/wiki/Arithmetic_logic_unit
https://en.wikipedia.org/wiki/Orthogonalization
https://en.wikipedia.org/wiki/Operand
https://en.wikipedia.org/wiki/Addressing_mode
https://en.wikipedia.org/wiki/Intel_8080
https://en.wikipedia.org/wiki/Intel_8085
https://en.wikipedia.org/wiki/Multiplexing
https://en.wikipedia.org/wiki/Intel_80186
https://en.wikipedia.org/wiki/Intel_80286
https://en.wikipedia.org/wiki/Floating_point
https://en.wikipedia.org/wiki/Floating_point
https://en.wikipedia.org/wiki/Intel_8087
https://en.wikipedia.org/wiki/Cyrix
https://en.wikipedia.org/wiki/Weitek
https://en.wikipedia.org/wiki/Intel_80387
https://en.wikipedia.org/wiki/Color_burst
https://en.wikipedia.org/wiki/Color_burst
https://en.wikipedia.org/wiki/HMOS
https://en.wikipedia.org/wiki/CMOS
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Intel_80186
https://en.wikipedia.org/wiki/Intel_80188
https://en.wikipedia.org/wiki/GRiDPad
https://en.wikipedia.org/wiki/Toshiba_T1200
https://en.wikipedia.org/wiki/HP_110
https://en.wikipedia.org/wiki/Lunar_Prospector
https://en.wikipedia.org/wiki/Fujitsu
https://en.wikipedia.org/wiki/Harris_Corporation
https://en.wikipedia.org/wiki/Intersil
https://en.wikipedia.org/wiki/Oki_Electric_Industry

3.4. HARDWARE MODES 13

Soviet clone KP1810BM86.

OKI M80C86A QFP-56.

NEC μPD8086D-2 (8MHz) from 1984year 19week JAPAN
(clone of Intel D8086-2)

Siemens AG, Texas Instruments, NEC, Mitsubishi,
AMD. For example, the NEC V20 and NEC V30 pair
were hardware compatible with the 8088 and 8086 even
though NEC made original Intel clones μPD8088D and
μPD8086D, respectively, but incorporated the instruc-
tion set of the 80186 along with some (but not all) of the
80186 speed enhancements, providing a drop-in capabil-
ity to upgrade both instruction set and processing speed
without manufacturers having to modify their designs.
Such relatively simple and low-power 8086-compatible
processors in CMOS are still used in embedded systems.
The electronics industry of the Soviet Union was able to
replicate the 8086 through both industrial espionage and

reverse engineering. The resulting chip, K1810BM86,
was binary and pin-compatible with the 8086.
i8088 and i8086 were respectively the cores of the Soviet-
made PC-compatible EC1831 and EC1832 desktops
(EC1831 is the EC identification of IZOT 1037C and
EC1832 is the EC identification of IZOT 1036C, devel-
oped and manufactured in Bulgaria). However, EC1832
computer (IZOT 1036C) had significant hardware differ-
ences from its authentic prototype, and the data/address
bus circuitry was designed independently of Intel prod-
ucts. EC1832 was the first PC compatible computer with
dynamic bus sizing (US Pat. No 4,831,514). Later some
of the ES1832 principles were adopted in PS/2 (US Pat.
No 5,548,786) and some other machines (UK Patent Ap-
plication, Publication No. GB-A-2211325, Published
June. 28, 1989).

3.4 Hardware modes

The 8086 and 8088 support two hardware modes: maxi-
mum mode and minimum mode. Maximum mode is for
large applications such as multiprocessing and is also re-
quired to support the 8087 coprocessor. Themode is usu-
ally hard-wired into the circuit and cannot be changed by
software. Specifically, pin #33 (MN/MX) is either wired
to voltage or to ground to determine the mode. Changing
the state of pin #33 changes the function of certain other
pins, most of which have to do with how the CPU han-
dles the (local) bus. The IBM PC and PC/XT use an Intel
8088 running in maximum mode, which allows the CPU
to work with an optional 8087 coprocessor installed in
the math coprocessor socket on the PC or PC/XT main-
board. (The PC and PC/XT may require Max mode for
other reasons, such as perhaps to support the DMA con-
troller.)

3.5 Peripherals
• Intel 8237: direct memory access (DMA) controller

• Intel 8251: USART

• Intel 8253: programmable interval timer

• Intel 8255: programmable peripheral interface

• Intel 8259: programmable interrupt controller

• Intel 8279: keyboard/display controller

• Intel 8282/8283: 8-Bit latch

• Intel 8284: clock generator

• Intel 8286/8287: bidirectional 8-Bit driver

• Intel 8288: bus controller

• Intel 8289: bus arbiter

https://en.wikipedia.org/wiki/Oki_Electric_Industry
https://en.wikipedia.org/wiki/QFP
https://en.wikipedia.org/wiki/Siemens_AG
https://en.wikipedia.org/wiki/Texas_Instruments
https://en.wikipedia.org/wiki/NEC
https://en.wikipedia.org/wiki/Mitsubishi
https://en.wikipedia.org/wiki/AMD
https://en.wikipedia.org/wiki/NEC_V20
https://en.wikipedia.org/wiki/NEC_V30
https://en.wikipedia.org/wiki/Soviet_Union
https://en.wikipedia.org/wiki/Industrial_espionage
https://en.wikipedia.org/wiki/K1810BM86
https://en.wikipedia.org/wiki/EC1831
https://en.wikipedia.org/wiki/EC1832
https://en.wikipedia.org/wiki/Intel_8237
https://en.wikipedia.org/wiki/Intel_8251
https://en.wikipedia.org/wiki/Intel_8253
https://en.wikipedia.org/wiki/Intel_8255
https://en.wikipedia.org/wiki/Intel_8259
https://en.wikipedia.org/wiki/Intel_8279
https://en.wikipedia.org/wiki/Intel_8282
https://en.wikipedia.org/wiki/Intel_8283
https://en.wikipedia.org/wiki/Intel_8284
https://en.wikipedia.org/wiki/Intel_8286
https://en.wikipedia.org/wiki/Intel_8287
https://en.wikipedia.org/wiki/Intel_8288
https://en.wikipedia.org/wiki/Intel_8289

14 CHAPTER 3. INTEL 8086

3.6 Microcomputers using the
8086

• The Xerox NoteTaker was one of the earliest
portable computer designs in 1978 and used three
8086 chips (as CPU, graphics processor, and i/o
processor), but never entered commercial produc-
tion.

• Seattle Computer Products shipped S-100 bus based
8086 systems (SCP200B) as early as November
1979.

• The Norwegian Mycron 2000, introduced in 1980.

• One of the most influential microcomputers of all,
the IBM PC, used the Intel 8088, a version of
the 8086 with an eight-bit data bus (as mentioned
above).

• The first Compaq Deskpro used an 8086 running at
7.14 MHz, (?) but was capable of running add-in
cards designed for the 4.77 MHz IBM PC XT.

• An 8 MHz 8086 was used in the AT&T 6300 PC
(built by Olivetti), an IBM PC-compatible desk-
top microcomputer. The M24 / PC 6300 has IBM
PC/XT compatible 8-bit expansion slots, but some
of them have a proprietary extension providing the
full 16-bit data bus of the 8086 CPU (similar in con-
cept to the 16-bit slots of the IBM PC AT, but dif-
ferent in the design details, and physically incompat-
ible).

• The IBM PS/2 models 25 and 30 were built with an
8 MHz 8086.

• The Amstrad/Schneider PC1512, PC1640,
PC2086, PC3086 and PC5086 all used 8086 CPUs
at 8 MHz.

• The NEC PC-9801.

• The Tandy 1000 SL-series and RL machines used
8086 CPUs.

• The IBM Displaywriter word processing machine[8]
and theWang Professional Computer, manufactured
by Wang Laboratories, also used the 8086.

• NASA used original 8086 CPUs on equipment for
ground-based maintenance of the Space Shuttle
Discovery until the end of the space shuttle program
in 2011. This decision wasmade to prevent software
regression that might result from upgrading or from
switching to imperfect clones.[9]

• KAMAN Process and Area Radiation Monitors[10]

3.7 Notes
[1] Fewer TTL buffers, latches, multiplexers (although the

amount of TTL logic was not drastically reduced). It also
permitted the use of cheap 8080-family ICs, where the
8254 CTC, 8255 PIO, and 8259 PIC were used in the
IBM PC design. In addition, it made PCB layout simpler
and boards cheaper, as well as demanding fewer (1- or 4-
bit wide) DRAM chips.

[2] using enhancement load PMOS logic (demanding 14V,
achieving TTL-compatibility by having VCC at +5V and
VDD at −9V)

[3] using non-saturated enhancement load NMOS logic (de-
manding a higher gate voltage for the load transistor-gates)

[4] made possible with depletion load nMOS logic (the 8085
was later made using HMOS processing, just like the
8086)

[5] Rev.0 of the instruction set and architecture was ready in
about three months, according to Morse.

[6] Using rubylith, light boards, rulers, electric erasers, and a
digitizer (according to Jenny Hernandez, member of the
8086 design team, in a statementmade on Intel’s web-page
for its 25th birthday).

[7] 8086 used less microcode thanmany competitors’ designs,
such as the MC68000 and others

[8] Fast static RAMs in MOS technology (as fast as bipolar
RAMs) was an important product for Intel during this pe-
riod.

[9] CHMOS is Intel’s name for CMOS circuits manufactured
using processing steps very similar to HMOS.

[10] Other members of the design team were Peter A.Stoll and
Jenny Hernandez.

[11] Some 80186 clones did change the shift value, but were
never commonly used in desktop computers.

3.8 See also
• Transistor count

• iAPX, for the iAPX name

3.9 References
[1] “Microprocessor Hall of Fame”. Intel. Archived from the

original on 2007-07-06. Retrieved 2007-08-11.

[2] Official Intel iAPX 286 programmers’ manual (page 1-1)

[3] Birth of a Standard: The Intel 8086 Microprocessor.
Thirty years ago, Intel released the 8086 processor, in-
troducing the x86 architecture that underlies every PC-
Windows, Mac, or Linux-produced today, PC World,
June 17, 2008

https://en.wikipedia.org/wiki/Xerox_NoteTaker
https://en.wikipedia.org/wiki/Portable_computer
https://en.wikipedia.org/wiki/Seattle_Computer_Products
https://en.wikipedia.org/wiki/S-100_bus
https://en.wikipedia.org/wiki/Mycron
https://en.wikipedia.org/wiki/IBM_PC
https://en.wikipedia.org/wiki/Intel_8088
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/Compaq_Deskpro
https://en.wikipedia.org/wiki/IBM_PC_XT
https://en.wikipedia.org/wiki/Olivetti_M24
https://en.wikipedia.org/wiki/Olivetti
https://en.wikipedia.org/wiki/IBM_PC_AT
https://en.wikipedia.org/wiki/IBM_Personal_System/2
https://en.wikipedia.org/wiki/Amstrad_PC1512
https://en.wikipedia.org/wiki/Amstrad_PC1640
https://en.wikipedia.org/wiki/Amstrad_PC2086
https://en.wikipedia.org/wiki/Amstrad_PC3086
https://en.wikipedia.org/wiki/Amstrad_PC5086
https://en.wikipedia.org/wiki/NEC_PC-9801
https://en.wikipedia.org/wiki/Tandy_1000
https://en.wikipedia.org/wiki/IBM_Displaywriter
https://en.wikipedia.org/wiki/Wang_Laboratories
https://en.wikipedia.org/wiki/NASA
https://en.wikipedia.org/wiki/Space_Shuttle_Discovery
https://en.wikipedia.org/wiki/Space_Shuttle_Discovery
https://en.wikipedia.org/wiki/Software_regression
https://en.wikipedia.org/wiki/Software_regression
https://en.wikipedia.org/wiki/Intel_8255
https://en.wikipedia.org/wiki/PMOS_logic
https://en.wikipedia.org/wiki/NMOS_logic
https://en.wikipedia.org/wiki/Rubylith
https://en.wikipedia.org/wiki/Digitizer
https://en.wikipedia.org/wiki/HMOS
https://en.wikipedia.org/wiki/Transistor_count
https://en.wikipedia.org/wiki/IAPX
http://web.archive.org/web/20070706032836/http://www.intel.com/museum/online/hist_micro/hof/
http://www.intel.com/museum/online/hist%5Fmicro/hof/
http://www.intel.com/museum/online/hist%5Fmicro/hof/
http://bitsavers.trailing-edge.com/pdf/intel/80286/210498-001_1983_iAPX_286_Programmers_Reference_1983.pdf
http://www.pcworld.com/article/146957/birth_of_a_standard_the_intel_8086_microprocessor.html
http://www.pcworld.com/article/146957/birth_of_a_standard_the_intel_8086_microprocessor.html
http://www.pcworld.com/article/146957/birth_of_a_standard_the_intel_8086_microprocessor.html
http://www.pcworld.com/article/146957/birth_of_a_standard_the_intel_8086_microprocessor.html

3.10. EXTERNAL LINKS 15

[4] Randall L. Geiger, Phillip E. Allen, Noel R. Strader VLSI
design techniques for analog and digital circuits, McGraw-
Hill Book Co., 1990, ISBN 0-07-023253-9, page 779
“Random Logic vs. Structured Logic Forms”, illustration
of use of “random” describing CPU control logic

[5] Intel 8008 to 8086 by Stephen P. Morse et al.

[6] Osborne 16 bit Processor Handbook (Adam Osborne &
Gerry Kane) ISBN 0-931988-43-8

[7] Microsoft Macro Assembler 5.0 Reference Manual. Mi-
crosoft Corporation. 1987. “Timings and encodings in
this manual are used with permission of Intel and come
from the following publications: Intel Corporation. iAPX
86, 88, 186 and 188 User’s Manual, Programmer’s Refer-
ence, Santa Clara, Calif. 1986.” (Similarly for iAPX 286,
80386, 80387.)

[8] Zachmann, Mark (August 23, 1982). “Flaws in IBM Per-
sonal Computer frustrate critic”. InfoWorld (Palo Alto,
CA: Popular Computing) 4 (33): 57–58. ISSN 0199-
6649. “the IBM Displaywriter is noticeably more expen-
sive than other industrial micros that use the 8086.”

[9] For Old Parts, NASA Boldly Goes ... on eBay, May 12,
2002.

[10] Kaman Tech. Manual

3.10 External links
• Architecture-Of-8086 and pin at scanftree.com

• Intel datasheets

• List of 8086 CPUs and their clones at CPU-
world.com

• 8086 Pinouts

• Maximum Mode Interface

• The 8086 User’s manual October 1979 INTEL Cor-
poration (PDF document)

• 8086 program codes using emu8086 (Version 4.08)
Emulator

• Intel 8086/80186 emulator written in C, this file is
part of a larger PC emulator

https://en.wikipedia.org/wiki/Special:BookSources/0070232539
https://en.wikipedia.org/wiki/Special:BookSources/0931988438
https://en.wikipedia.org/wiki/MASM
http://books.google.com/books?id=VDAEAAAAMBAJ&pg=PA57
http://books.google.com/books?id=VDAEAAAAMBAJ&pg=PA57
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
https://www.worldcat.org/issn/0199-6649
https://www.worldcat.org/issn/0199-6649
http://www.nytimes.com/2002/05/12/technology/ebusiness/12NASA.html?pagewanted=2
http://scanftree.com/microprocessor/Architechture-Of-8086
http://datasheets.chipdb.org/Intel/x86/808x/datashts/8086
http://www.cpu-world.com/CPUs/8086/
http://www.cpu-world.com/CPUs/8086/
http://www.cpu-world.com/info/Pinouts/8086.html
http://www.8085projects.info/post/Maximum-Mode-Interface.aspx
http://matthieu.benoit.free.fr/cross/data_sheets/Intel_8086_users_manual.htm
http://matthieu.benoit.free.fr/cross/data_sheets/Intel_8086_users_manual.htm
https://en.wikipedia.org/wiki/PDF
http://www.shubhsblog.com/category/8086-programs/
http://www.shubhsblog.com/category/8086-programs/
http://sourceforge.net/p/fake86/code/ci/master/tree/src/fake86/cpu.c
http://sourceforge.net/p/fake86/code/ci/master/tree/src/fake86/cpu.c

Chapter 4

Intel MCS-51

Intel P8051 microcontroller.

SAB-C515-LN by Infineon is based on the 8051

The Intel MCS-51 (commonly referred to as 8051) is
a Harvard architecture, CISC instruction set, single chip
microcontroller (µC) series which was developed by Intel
in 1980 for use in embedded systems.[1] Intel’s original
versions were popular in the 1980s and early 1990s and
enhanced binary compatible derivatives remain popular
today.
Intel’s original MCS-51 family was developed using
NMOS technology, but later versions, identified by a let-
ter C in their name (e.g., 80C51) used CMOS technology
and consume less power than their NMOS predecessors.
This made them more suitable for battery-powered de-
vices.

The family was continued in 1996 with the enhanced
8-bit MCS-151 and the 8/16/32-bit MCS-251 family
of binary compatible microcontrollers.[2] While Intel no
longer manufactures the MCS-51, MCS-151 and MCS-
251 family, enhanced binary compatible derivativesmade
by numerous vendors remain popular today. Some
derivatives integrate a digital signal processor (DSP). In
addition to these physical devices, several companies also
offer MCS-51 derivatives as IP cores for use in FPGAs
or ASICs designs.

4.1 Important features and appli-
cations

Port 0
Latch

ACC Stack
Pointer

Program
Address
Register

Buffer

PC
Incrementer

Program
Counter

DPTR

Interrupt, Serial Port,
and Timer Blocks

TMP2 TMP1B
Register

EPROM/
ROM

Port 2
LatchRAM

RAM Addr.
Register

PSW

Port 1
Latch

Port 3
Latch

Timing
and

Control

Port 1
Drivers

Port 3
Drivers

Port 0
Drivers

Port 2
Drivers

ALU

OSC.

16

8

8

Vcc

Vss

PSEN#

ALE/PROG#

EA#/VPP

RST

P1.0 - P1.7 P3.0 - P3.7

P2.0 - P2.7P0.0 - P0.7

XTAL1 XTAL2

Intel 8051 Microarchitecture

In
st

ru
ct

io
n

R
eg

is
te

r

i8051 microarchitecture.

The 8051 architecture provides many functions (CPU,
RAM, ROM, I/O, interrupt logic, timer, etc.) in a sin-
gle package

• 8-bit ALU and Accumulator, 8-bit Registers (one
16-bit register with special move instructions), 8-
bit data bus and 2×16-bit address bus/program

16

https://en.wikipedia.org/wiki/Harvard_architecture
https://en.wikipedia.org/wiki/Complex_instruction_set_computing
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Binary_compatible
https://en.wikipedia.org/wiki/NMOS_logic
https://en.wikipedia.org/wiki/CMOS
https://en.wikipedia.org/wiki/8-bit
https://en.wikipedia.org/wiki/16-bit
https://en.wikipedia.org/wiki/32-bit
https://en.wikipedia.org/wiki/Binary_compatible
https://en.wikipedia.org/wiki/Digital_signal_processor
https://en.wikipedia.org/wiki/IP_core
https://en.wikipedia.org/wiki/FPGAs
https://en.wikipedia.org/wiki/ASICs
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Random_access_memory
https://en.wikipedia.org/wiki/Read-only_memory
https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Timer
https://en.wikipedia.org/wiki/Integrated_circuit_packaging
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Arithmetic_logic_unit
https://en.wikipedia.org/wiki/Accumulator_(computing)
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/16-bit
https://en.wikipedia.org/wiki/Instruction_set#Data_handling_and_Memory_operations
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/Address_bus
https://en.wikipedia.org/wiki/Program_counter

4.2. MEMORY ARCHITECTURE 17

counter/data pointer and related 8/11/16-bit oper-
ations; hence it is mainly an 8-bit microcontroller

• Boolean processor with 17 instructions, 1-bit accu-
mulator, 32 registers (4 bit-addressable 8-bit) and
up to 144 special 1 bit-addressable RAM variables
(18 bit-addressable 8-bit)[3]

• Multiply, divide and compare instructions

• 4 fast switchable register banks with 8 registers each
(memory mapped)

• Fast interrupt with optional register bank switching

• Interrupts and threads with selectable priority[4]

• Dual 16-bit address bus – It can access 2 x 216 mem-
ory locations – 64 KB (65,536 locations) each of
RAM and ROM

• 128 bytes of on-chip RAM (IRAM)

• 4 KiB of on-chip ROM, with a 16-bit (64 KiB) ad-
dress space (PMEM). Not included on 803X vari-
ants

• Four 8-bit bi-directional input/output port

• UART (serial port)

• Two 16-bit Counter/timers

• Power saving mode (on some derivatives)

One feature of the 8051 core is the inclusion of a boolean
processing engine which allows bit-level boolean logic op-
erations to be carried out directly and efficiently on select
internal registers and select RAM locations. This feature
helped cement the 8051’s popularity in industrial control
applications because it reduced code size by as much as
30%. Another feature is the inclusion of four bank se-
lectable working register sets which greatly reduce the
amount of time required to complete an interrupt service
routine. With a single instruction the 8051 can switch
register banks as opposed to the time consuming task of
transferring the critical registers to the stack or designated
RAM locations. These registers also allowed the 8051 to
quickly perform a context switch.
Once a UART, and a timer if necessary, has been config-
ured, the programmer needs only write a simple interrupt
routine to refill the send shift register whenever the last bit
is shifted out by the UART and/or empty the full receive
shift register (copy the data somewhere else). The main
program then performs serial reads and writes simply by
reading and writing 8-bit data to stacks.

4.1.1 Derivate features

As of 2013, new derivates are still developed by many
major chipmakers, and major compiler suppliers such as
IAR Systems, Keil and Altium Tasking continuously re-
lease updates.
MCS-51 based microcontrollers typically include one or
two UARTs, two or three timers, 128 or 256 bytes of in-
ternal data RAM (16 bytes of which are bit-addressable),
up to 128 bytes of I/O, 512 bytes to 64 KB of internal
program memory, and sometimes a quantity of extended
data RAM (ERAM) located in the external data space.
The original 8051 core ran at 12 clock cycles per ma-
chine cycle, with most instructions executing in one or
two machine cycles. With a 12MHz clock frequency, the
8051 could thus execute 1 million one-cycle instructions
per second or 500,000 two-cycle instructions per second.
Enhanced 8051 cores are now commonly used which run
at six, four, two, or even one clock per machine cycle,
and have clock frequencies of up to 100 MHz, and are
thus capable of an even greater number of instructions
per second. All Silicon Labs, some Dallas and a few At-
mel devices have single cycle cores.
8051 variants may include built-in reset timers
with brown-out detection, on-chip oscillators, self-
programmable Flash ROM program memory, built-in
external RAM, extra internal program storage, boot-
loader code in ROM, EEPROM non-volatile data
storage, I²C, SPI, and USB host interfaces, CAN or LIN
bus, ZigBee or Bluetooth radio modules, PWM gener-
ators, analog comparators, A/D and D/A converters,
RTCs, extra counters and timers, in-circuit debugging
facilities, more interrupt sources, extra power saving
modes, etc.
In many engineering schools the 8051 microcontroller is
used in introductory microcontroller courses.

4.2 Memory architecture

TheMCS-51 has four distinct types of memory – internal
RAM, special function registers, program memory, and
external data memory.
Internal RAM (IRAM) is located from address 0 to ad-
dress 0xFF. IRAM from 0x00 to 0x7F can be accessed
directly. IRAM from 0x80 to 0xFF must be accessed in-
directly, using the @R0 or @R1 syntax, with the address
to access loaded in R0 or R1. The 128 bits at IRAM lo-
cations 0x20–0x2F are bit-addressable.
Special function registers (SFR) are located in the same
address space as IRAM, at addresses 0x80 to 0xFF, and
are accessed directly using the same instructions as for
the lower half of IRAM. They can not be accessed in-
directly via @R0 or @R1. 16 of the SFRs are also bit-
addressable.

https://en.wikipedia.org/wiki/Pointer_(computer_programming)
https://en.wikipedia.org/wiki/8-bit
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Boolean_datatype
https://en.wikipedia.org/wiki/Binary_multiplier
https://en.wikipedia.org/wiki/Relational_operator
https://en.wikipedia.org/wiki/Bank_switching
https://en.wikipedia.org/wiki/Memory_map
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Address_bus
https://en.wikipedia.org/wiki/Kilobyte
https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/Kilobyte
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Serial_port
https://en.wikipedia.org/wiki/Timer
https://en.wikipedia.org/wiki/Power_management
https://en.wikipedia.org/wiki/Boolean_datatype
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Boolean_logic
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/RAM
https://en.wikipedia.org/wiki/Bank_switching
https://en.wikipedia.org/wiki/Bank_switching
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/IAR_Systems
https://en.wikipedia.org/wiki/Keil_(company)
http://www.tasking.com/
https://en.wikipedia.org/wiki/UART
https://en.wikipedia.org/wiki/RAM
https://en.wikipedia.org/wiki/Input/Output
https://en.wikipedia.org/wiki/Clock_frequency
https://en.wikipedia.org/wiki/Silicon_Labs
https://en.wikipedia.org/wiki/Flash_ROM
https://en.wikipedia.org/wiki/I²C
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/USB
https://en.wikipedia.org/wiki/Controller–area_network
https://en.wikipedia.org/wiki/Local_Interconnect_Network
https://en.wikipedia.org/wiki/ZigBee
https://en.wikipedia.org/wiki/Bluetooth
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Analog_to_digital_converter
https://en.wikipedia.org/wiki/Digital_to_analog_converter
https://en.wikipedia.org/wiki/Real-time_clock
https://en.wikipedia.org/wiki/Internal_RAM

18 CHAPTER 4. INTEL MCS-51

Program memory (PMEM, though less common in us-
age than IRAM and XRAM) is up to 64 KiB of read-
only memory, starting at address 0 in a separate address
space. It may be on- or off-chip, depending on the partic-
ular model of chip being used. Program memory is read-
only, though some variants of the 8051 use on-chip flash
memory and provide a method of re-programming the
memory in-system or in-application. In addition to code,
it is possible to store read-only data in program memory,
accessed by the MOVC A, @DPTR instruction. Data is
fetched from the address specified in the 16-bit special
function register DPTR.
External data memory (XRAM) is a third address space,
also starting at address 0. It can also be on- or off-chip;
what makes it “external” is that it must be accessed using
the MOVX (Move eXternal) instruction. Many variants
of the 8051 include the standard 256 bytes of IRAM plus
a few KB of XRAM on the chip.
The 8051 is designed as a strict Harvard architecture. The
8051 can only execute code fetched from program mem-
ory. The 8051 does not have any instruction to write to
program memory. Most 8051 systems respect this dis-
tinction, and so are unable to download and directly ex-
ecute new programs. The strict Harvard architecture has
the advantage of making such systems immune to most
forms of malware. Some 8051 systems have (or can
be modified to have) some “dual-mapped” RAM, mak-
ing them act somewhat more like Princeton architecture.
This (partial) Princeton architecture has the advantage of
making it possible for a Forth boot loader running on the
8051 to write new native code to RAM and then execute
it, leading to faster incremental and interactive program-
ming cycles than strict Harvard systems.[5][6]

4.3 Registers

The only register on an 8051 that is not memory-mapped
is the 16-bit program counter PC. This specifies the ad-
dress of the next instruction to execute. Relative branch
instructions supply an 8-bit signed offset which is added
to the PC.
The following registers are memory-mapped into the spe-
cial function register space:

• (0x81) Stack pointer SP. This is an 8-bit register
used by subroutine call and return instructions. The
stack grows upward; the SP is incremented before
pushing, and decremented after popping a value.

• (0x82–83) Data pointer DP. This is a 16-bit register
that is used for accessing PMEM and XRAM.

• (0xD0) Program status word PSW. This contains
important status flags:

--- PSW.0: P Parity. Gives the parity (modulo-2
sum of the bits of) the most recent ALU result.

--- PSW.1: UD User Defined. For general soft-
ware use, not otherwise used by hardware.

--- PSW.2: OV Overflow flag. Set when addition
produces a signed overflow.

--- PSW.3: RS0 Register select 0. The low-order
bit of the register bank. Set when banks at
0x08 or 0x18 are in use.

--- PSW.4: RS1 Register select 1. The high-order
bit of the register bank. Set when banks at
0x10 or 0x18 are in use.

--- PSW.5: F0 Flag 0. For general software use,
not otherwise used by hardware.

--- PSW.6: AC auxiliary carry. Set when addition
produces a carry from bit 3 to bit 4.

--- PSW.7: C Carry bit.

• (0xE0) Accumulator A. This register is used bymost
instructions.

• (0xF0) B register. This is used as an extension to the
accumulator for multiply and divide instructions.

In addition, there are 8 general purpose registers R0–R7,
mapped to IRAM between 0x00 and 0x1F. Only 8 bytes
of that range are used at any given time, determined by
the bank select bits in the PSW.
256 single bits are directly addressable. These are the
16 IRAM locations from 0x20–0x2F, and the 16 special
function registers 0x80, 0x88, 0x90, …, 0xF8.
Note that the PSW does not contain the common N (neg-
ative) and Z (zero) flags. Instead, because the accumu-
lator is a bit-addressible SFR, it is possible to branch on
individual bits of it, including the msbit. There is also an
instruction to jump if the accumulator is zero or non-zero.

4.4 Instruction set

Instructions are all 1 to 3 bytes long, consisting of an ini-
tial opcode byte, followed by up to 2 bytes of operands.
There are 16 basic ALU instructions that operate between
the accumulator and a second operand, specified using
one of the following addressing modes:

• Register direct, R0–R7 (opcodes x8–xF)

• Register indirect, @R0 or @R1 (opcodes x6 and x7)

• Memory direct, specifying an IRAM or SFR loca-
tion (opcodes x5, followed by 1 byte of address)

• Immediate, specifying an 8-bit constant (opcodes
x4, followed by 1 byte of data)

The instructions are as follows. Not all support all ad-
dressing modes; the immediate mode in particular is
sometimes nonsensical:

https://en.wikipedia.org/wiki/Harvard_architecture
https://en.wikipedia.org/wiki/Malware
https://en.wikipedia.org/wiki/Princeton_architecture
https://en.wikipedia.org/wiki/Forth_(programming_language)
https://en.wikipedia.org/wiki/Boot_loader
https://en.wikipedia.org/wiki/Interactive_programming
https://en.wikipedia.org/wiki/Interactive_programming
https://en.wikipedia.org/wiki/Overflow_flag
https://en.wikipedia.org/wiki/Adjust_flag
https://en.wikipedia.org/wiki/Carry_bit

4.5. PROGRAMMING 19

• 0y INC operand: Increment the specified operand.
Opcode 04 specifies “INC A”

• 1yDEC operand: Decrement the specified operand.
Opcode 14 specifies “DEC A”

• 2y ADD A,operand: Add the operand to the accu-
mulator A.

• 3y ADDC A,operand: Add the operand, plus the C
bit, to the accumulator.

• 4y ORL A,operand: Logical OR the operand into
the A register.

• 5y ANL A,operand: Logical AND the operand into
the A register.

• 6y XRL A,operand: Logical exclusive-OR the
operand into the A register.

• 7y MOV operand,#data: Move immediate data to
the operand. Opcode 74 specifies “MOV A,#data.

• 8y MOV address,operand: Move data to an IRAM
or SFR register.

• 9y SUBBA,operand: Subtract the operand from the
accumulator, with borrow. Note there is no subtract
without borrow.

• Ay MOV operand,address: Move data from an
IRAM or SFR register. Opcodes A4 and A5 are
not used.

• By CJNE operand,#data,offset: Compare operand
to the immediate data, and branch to PC+address
if not equal. Opcodes B4 and B5 perform CJNE
A,operand,offset, for memory direct and immediate
operands. Note there is no “compare and jump if
equal” instruction.

• Cy XCH A,operand: Exchange (swap) the accumu-
lator and the operand. Opcode C4 is not used.

• Dy DJNZ operand,offset: Decrement the operand,
and branch to PC+offset if the result is non-zero.
Opcodes D4, D6, and D7 are not used.

• Ey MOV A,operand: Move operand to the accu-
mulator. Opcode E4 is not used. (Use opcode 74
instead.)

• Fy MOV operand,A: Move accumulator to the
operand. Opcode F4 is not used.

Only the ADD, ADDC and SUBB instructions set PSW
flags. The INC, DEC, and logical instructions do not. The
CJNE instructions modify the C bit only, to the borrow
that results from operand1−operand2.
The 32 opcodes 0x00–0x3F, plus the few opcodes not
used in the above range, are used for other instructions
with more limited operand-specification capabilities.

One of the reasons for the 8051’s popularity is its range
of operations on single bits. Bits are always specified by
absolute addresses; there is no register-indirect or indexed
addressing. Instructions that operate on single bits are:

• SETB bit, CLR bit, CPL bit: Set, clear, or comple-
ment the specified bit

• JB bit,offset: Jump if bit set

• JNB bit,offset: Jump if bit clear

• JBC bit,offset: Jump if bit set, and clear bit

• MOV C,bit, MOV bit,C: Move the specified bit to
the carry bit, or vice-versa

• ORL C,bit, ORL C,/bit: OR the bit (or its comple-
ment) to the carry bit

• ANL C,bit, ANL C,/bit: AND the bit (or its com-
plement) to the carry bit

• XRL C,bit, XRL C,/bit: Exclusive-OR the bit (or its
complement) to the carry bit

Although most instructions require that one operand is
the accumulator or an immediate constant, it is possible
to perform a MOV directly between two internal RAM
locations.

4.5 Programming

Main article: 8051 compiler

There are various high-level programming language
compilers for the 8051. Several C compilers are avail-
able for the 8051, most of which allow the programmer
to specify where each variable should be stored in its six
types of memory, and provide access to 8051 specific
hardware features such as the multiple register banks and
bit manipulation instructions. There are many commer-
cial C compilers. SDCC is a popular open source C com-
piler. Other high level languages such as C++, Forth,
BASIC, Pascal/Object Pascal, PL/M and Modula-2 are
available for the 8051, but they are less widely used than
C and assembly.
Because IRAM,XRAM, and PMEM (read only) all have
an address 0, C compilers for the 8051 architecture pro-
vide compiler-specific pragmas or other extensions to in-
dicate where a particular piece of data should be stored
(i.e. constants in PMEM or variables needing fast access
in IRAM). Since data could be in one of three memory
spaces, a mechanism is usually provided to allow deter-
mining to which memory a pointer refers, either by con-
straining the pointer type to include the memory space,
or by storing metadata with the pointer.

https://en.wikipedia.org/wiki/8051_compiler
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/8051_compiler
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Small_Device_C_Compiler
https://en.wikipedia.org/wiki/C++_(programming_language)
https://en.wikipedia.org/wiki/Forth_(programming_language)
https://en.wikipedia.org/wiki/BASIC_programming_language
https://en.wikipedia.org/wiki/Pascal_programming_language
https://en.wikipedia.org/wiki/Object_Pascal
https://en.wikipedia.org/wiki/PL/M
https://en.wikipedia.org/wiki/Modula-2
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Directive_(programming)

20 CHAPTER 4. INTEL MCS-51

4.6 Related processors

Intel 8031 processors

The 8051’s predecessor, the 8048, was used in the key-
board of the first IBM PC, where it converted keypresses
into the serial data stream which is sent to the main unit
of the computer. The 8048 and derivatives are still used
today for basic model keyboards.
The 8031 was a cut down version of the original Intel
8051 that did not contain any internal program memory
(ROM). To use this chip, external ROM had to be added
containing the program that the 8031 would fetch and ex-
ecute. An 8051 chip could be sold as a ROM-less 8031,
as the 8051’s internal ROM is disabled by the normal state
of the EA pin in an 8031-based design. A vendor might
sell an 8051 as an 8031 for any number of reasons, such
as faulty code in the 8051’s ROM, or simply an oversup-
ply of 8051s and undersupply of 8031s.
The 8052 was an enhanced version of the original 8051
that featured 256 bytes of internal RAM instead of 128
bytes, 8 KB of ROM instead of 4 KB, and a third 16-bit
timer. The 8032 had these same features except for the
internal ROM program memory. Most modern “8051-
compatible” microcontrollers include these features.
Intel discontinued its MCS-51 product line in March
2007;[7] however, there are plenty of enhanced 8051
products or silicon intellectual property added regularly
from other vendors.
The 80C537 and 80C517 are CMOS versions, designed
for the automotive industry. Enhancements mostly in-
clude new peripheral features and expanded arithmetic
instructions. The 80C517 has fail-safe mechanisms, ana-
log signal processing facilities and timer capabilities and
8 KB on-chip program memory. Other features include:

• 256 byte on-chip RAM

• 256 directly addressable bits

• External program and data memory expandable up
to 64 KB

• 8-bit A/D converter with 12 multiplexed inputs

• Arithmetic unit can make division, multiplication,
shift and normalize operations

• Eight data pointers instead of one for indirect ad-
dressing of program and external data memory

• Extended watchdog facilities

• Nine ports

• Two full-duplex serial interfaces with own baud rate
generators

• Four priority level interrupt systems, 14 interrupt
vectors

• Three power saving modes

4.6.1 Derivate vendors

Current vendors of MCS-51 compatible processors in-
clude more than 20 independent manufacturers includ-
ing Atmel, Infineon Technologies (formerly Siemens
AG), Maxim Integrated Products (via its Dallas Semi-
conductor subsidiary), NXP (formerly Philips Semi-
conductor), Microchip Technology, Nuvoton (formerly
Winbond), ST Microelectronics, Silicon Laboratories
(formerly Cygnal), Texas Instruments, Ramtron Interna-
tional, Silicon Storage Technology, Cypress Semiconduc-
tor and Analog Devices.[8]

ICs or IPs compatible with the MCS-51 have been devel-
oped by

• Acer Labs

• Actel

• Aeroflex UTMC

• Altium

• Analog Devices

• ASIX

• Atmel

• AustriaMicroSystems

• AXSEM

• California Eastern Laboratories (CEL)

• Cast

• CML Microcircuits

https://en.wikipedia.org/wiki/Intel_MCS-48
https://en.wikipedia.org/wiki/IBM_PC
https://en.wikipedia.org/wiki/Read-only_memory
https://en.wikipedia.org/wiki/Read-only_memory
https://en.wikipedia.org/wiki/Silicon_intellectual_property
https://en.wikipedia.org/wiki/CMOS
https://en.wikipedia.org/wiki/Automotive_industry
https://en.wikipedia.org/wiki/Atmel
https://en.wikipedia.org/wiki/Infineon_Technologies
https://en.wikipedia.org/wiki/Siemens_AG
https://en.wikipedia.org/wiki/Siemens_AG
https://en.wikipedia.org/wiki/Maxim_Integrated_Products
https://en.wikipedia.org/wiki/Dallas_Semiconductor
https://en.wikipedia.org/wiki/Dallas_Semiconductor
https://en.wikipedia.org/wiki/NXP_Semiconductors
https://en.wikipedia.org/wiki/Philips
https://en.wikipedia.org/wiki/Microchip_Technology
https://en.wikipedia.org/wiki/Winbond
https://en.wikipedia.org/wiki/ST_Microelectronics
https://en.wikipedia.org/wiki/Silicon_Laboratories
https://en.wikipedia.org/wiki/Texas_Instruments
https://en.wikipedia.org/wiki/Ramtron_International
https://en.wikipedia.org/wiki/Ramtron_International
https://en.wikipedia.org/wiki/Silicon_Storage_Technology
https://en.wikipedia.org/wiki/Cypress_Semiconductor
https://en.wikipedia.org/wiki/Cypress_Semiconductor
https://en.wikipedia.org/wiki/Analog_Devices

4.7. USE AS INTELLECTUAL PROPERTY 21

• CORERIVER

• Cybernetic Micro Systems

• CybraTech

• Cypress

• Daewoo

• Dallas Semiconductor

• Digital Core Design

• Dolphin

• Domosys

• easyplug

• EnOcean

• Evatronix

• Fairchild

• Genesis Microchip

• Genesys Logic

• Goal Semiconductor

• Handshake Solutions

• Honeywell

• Hynix Semiconductor

• Infineon

• InnovASIC

• Intel

• ISSI

• Lapis Semiconductor

• Maxim (Dallas Semiconductor)

• Megawin

• Mentor Graphics

• Micronas

• Microsemi

• MXIC

• Myson Technology

• Nordic Semiconductor

• Nuvoton (Winbond)

• NXP (founded by Philips)

• OKI

• Oregano Systems

• PalmChip

• Prolific

• Radio Pulse

• Ramtron

• RDC

• RDC Semiconductor

• Sanyo

• Sharp

• Sigma Designs

• Silicon Laboratories (Cygnal)

• Siliconians

• SMSC

• SST

• STMicroelectronics

• SyncMOS

• Synopsys

• Syntek Semiconductor

• Tekmos

• Teridian Semiconductor

• Texas Instruments

• Tezzaron Semiconductor

• Triscend

• Vitesse

• Yitran

• Zensys

• Zilog

• Zylogic Semiconductor

4.7 Use as intellectual property

Today, 8051s are still available as discrete parts, but
they are mostly used as silicon intellectual property cores.
Available in high-level language source code (VHDL or
Verilog) or FPGA netlist forms, these cores are typically
integrated within embedded systems, in products ranging
from USB flash drives to washing machines to complex
wireless communication systems on a chip. Designers use
8051 silicon IP cores, because of the smaller size, and
lower power, compared to 32 bit processors like ARMM
series, MIPS and BA22. Modern 8051 cores are faster

https://en.wikipedia.org/wiki/Silicon_intellectual_property
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Netlist
https://en.wikipedia.org/wiki/USB_flash_drive
https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/MIPS_architecture

22 CHAPTER 4. INTEL MCS-51

than earlier packaged versions. Design improvements
have increased 8051 performance while retaining com-
patibility with the original MCS 51 instruction set. The
original Intel 8051 ran at 12 clock cycles per machine
cycle, and most instructions executed in one or two ma-
chine cycles. A typical maximum clock frequency of 12
MHz meant these old 8051s could execute one million
single-cycle instructions, or 500,000 two-cycle instruc-
tions, per second. In contrast, enhanced 8051 silicon IP
cores now run at one clock cycle per machine cycle, and
have clock frequencies of up to 450 MHz. That means an
8051-compatible processor can now execute 450 million
instructions per second.

4.8 MCU based on 8051

• Atmel: AT89C51, AT89S51, AT83C5134

• Infineon: XC800

• NXP: NXP700 and NXP900 series

• Silicon Labs: C8051 series

• Texas Instruments CC111x, CC24xx and CC25xx
families of RF SoCs

4.9 Digital signal processor (DSP)
variants

Several variants with an additional 16-bit digital signal
processor (DSP) (for example for MP3 or OGG cod-
ing/decoding) with up to 675 million instructions per sec-
ond (MIPS)[9] and integrated USB 2.0 interface[10] or as
intellectual property[11] exist.

4.10 Enhanced 8-bit binary com-
patible microcontroller:
MCS-151 family

1996 Intel announced the MCS-151 family, an up to 6
times faster variant.[2] 8051 fully binary and instruction
set compatible, but with pipelined CPU, 16 bit internal
code bus and 6x speed. The MCS-151 family was also
discontinued by Intel, but is widely available in binary
compatible and partly enhanced variants.

4.11 8/16/32-bit binary compati-
ble microcontroller: MCS-
251 family

The 80251 8/16/32-bit microcontroller with 16MB (24-
bit) address-space and 6 times faster instruction cycle was
introduced by Intel in 1996.[2][12] It can perform as an 8-
bit 8051, has 24-bit external address space which is 16-bit
wide segmented and 32-bit ALU with mostly 8/16/32-bit
wide data instructions (also Boolean processor with spe-
cial registers/memory) and a large CISC instruction set,
40 8/16/32-bit registers with 8 8-bit registers in 4 times
fast switching memory banks (maximum 512 addressable
8-bit special registers).
It features extended instructions[13] - see also the pro-
grammer’s guide[14] - and later variants with higher
performance,[15] also available as intellectual property
(IP).[16] It is 3-stage pipelined. The MCS-251 family was
also discontinued by Intel, but is widely available in bi-
nary compatible and partly enhanced variants from many
manufacturers.

4.12 See also
• SDK-51 System Design Kit

• DS80C390

4.13 References
[1] JohnWharton: An Introduction to the Intel MCS-51 Single-

Chip Microcomputer Family, Application Note AP-69,
May 1980, Intel Corporation.

[2] Intel MCS 151 and MCS 251 Microcontrollers

[3] John Wharton: Using the Intel MCS-51 Boolean Process-
ing Capabilities Application Note AP-70, May 1980, Intel
Corporation.

[4] 8051 Tutorial: Interrupts

[5] Bradford J. Rodriguez. “CamelForth/8051”.

[6] Brad Rodriguez. “Moving Forth Part 7: CamelForth for
the 8051”.

[7] Intel bows out, discontinues MCS-51.

[8] http://www.analog.com/static/imported-files/data_
sheets/ADUC832.pdf

[9] TI Delivers new low-cost, high-performance audio DSP
for Home and Car w/ 8051

[10] Atmel AT85C51SND3 Audio DSP Data Sheet with USB
2.0

[11] Integration of 8051 With DSP in Xilinx FPGA

https://en.wikipedia.org/wiki/Atmel_AT89_series
https://en.wikipedia.org/wiki/XC800
https://en.wikipedia.org/wiki/C8051
https://en.wikipedia.org/wiki/Digital_signal_processor
https://en.wikipedia.org/wiki/Digital_signal_processor
https://en.wikipedia.org/wiki/MP3
https://en.wikipedia.org/wiki/OGG_Vorbis
https://en.wikipedia.org/wiki/USB_2.0
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/24-bit
https://en.wikipedia.org/wiki/24-bit
https://en.wikipedia.org/wiki/Memory_segmentation
https://en.wikipedia.org/wiki/Memory_segmentation
https://en.wikipedia.org/wiki/Arithmetic_logic_unit
https://en.wikipedia.org/wiki/32-bit
https://en.wikipedia.org/wiki/Boolean_datatype
https://en.wikipedia.org/wiki/Complex_instruction_set_computing
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Intel_System_Development_Kit#Intel_SDK-51
https://en.wikipedia.org/wiki/DS80C390
http://datasheets.chipdb.org/Intel/MCS51/151BACK.HTM
http://www2.elo.utfsm.cl/~lsb/elo311/aplicaciones/intel/booleanproc.pdf
http://www2.elo.utfsm.cl/~lsb/elo311/aplicaciones/intel/booleanproc.pdf
http://www.8052.com/tutint.phtml
http://www.camelforth.com/page.php?4
http://www.bradrodriguez.com/papers/moving7.htm
http://www.bradrodriguez.com/papers/moving7.htm
http://www.embedded.com/shared/printableArticle.jhtml?articleID=188500905
http://www.analog.com/static/imported-files/data_sheets/ADUC832.pdf
http://www.analog.com/static/imported-files/data_sheets/ADUC832.pdf
http://www.8052.com/news?NEWSID=61
http://www.8052.com/news?NEWSID=61
http://www.keil.com/dd/docs/datashts/atmel/at85c51snd3.pdf
http://www.keil.com/dd/docs/datashts/atmel/at85c51snd3.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?reload=true&tp=&arnumber=4266677&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4266544%2F4266545%2F04266677.pdf%3Farnumber%3D4266677

4.15. EXTERNAL LINKS 23

[12] The 8051 microcontroller By Kenneth J Ayala Google
books

[13] Temic TSC80251 Architecture

[14] Atmel TSC80251 Programmers Guide

[15] DQ80251 32bit Microcontroller DCD

[16] R80251XC 32bit Microcontroller Evatronix

4.14 Further reading

Books

• The 8051 Microcontroller : A Systems Approach;
Mazidi, McKinlay, Mazidi; 648 pages; 2012; ISBN
978-0135080443.

• C and the 8051; 4th Edition; Thomas Schultz; 464
pages; 2008; ISBN 978-0978399504.

• The 8051/8052 Microcontroller : Architecture, As-
sembly Language, and Hardware Interfacing; Craig
Steiner; 348 pages; 2005; ISBN 978-1581124590.

• 8051 Microcontrollers : Hardware, Software and
Applications; Calcutt, Cowan, Parchizadeh; 329
pages; 2000; ISBN 978-0340677070.

• The Microcontroller Idea Book : Circuits, Programs,
and Applications featuring the 8052-BASIC Micro-
controller; Jan Axelson; 277 pages; 1994; ISBN
978-0965081900.

• Payne, William (December 19, 1990) [1990]. Em-
bedded Controller FORTH for the 8051 Family
(hardcover). Boston: Academic Press. p. 528.
ISBN 978-0-12-547570-9.

Intel

• MCS-51 Microcontroller Family User’s Manual; In-
tel; 1994; publication number 121517.

• MCS-51 Macro Assembler User’s Guide; Intel; pub-
lication number 9800937.

• 8-Bit Embedded Controllers; Intel; 1991; publication
number 270645-003.

• Microcontroller Handbook; Intel; 1984; publication
number 210918-002.

• 8051 Microcontroller Preliminary Architectural
Specification and Functional Description; Intel; 44
pages; 1980.

4.15 External links
• Complete tutorial for 8051 microcontrollers

• Instruction set of 8051 microcontroller

• the source website for tutorials and simulator for
8051

• Basic 8051 Interfacing Circuits

• Open source VHDL 8051 implementation (Oregano
Systems)

This article is based on material taken from the Free On-
line Dictionary of Computing prior to 1 November 2008
and incorporated under the “relicensing” terms of the
GFDL, version 1.3 or later.

http://books.google.de/books?id=l6lveWkWqFoC&pg=PA400&lpg=PA400&ots=aX1rfMDJdF&dq=intel+80251&ie=ISO-8859-1&output=html
http://pe2bz.philpem.me.uk/pdf%20on%20typenumber/A-C/C251.pdf
http://www.cs.unc.edu/~vicci/comp261/project/mcu/80251_prog_man.pdf
http://dcd.pl/workspace/documentation/lat/dq80251_ds.pdf
http://www.evatronix.pl/products/pdf/r80251xc_datasheet.pdf
https://en.wikipedia.org/wiki/Special:BookSources/9780135080443
https://en.wikipedia.org/wiki/Special:BookSources/9780135080443
https://en.wikipedia.org/wiki/Special:BookSources/9780978399504
https://en.wikipedia.org/wiki/Special:BookSources/9781581124590
https://en.wikipedia.org/wiki/Special:BookSources/9780340677070
https://en.wikipedia.org/wiki/Special:BookSources/9780965081900
https://en.wikipedia.org/wiki/Special:BookSources/9780965081900
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-12-547570-9
http://eeweb1.poly.edu/networks/specs/27238302.pdf
http://archive.org/details/bitsavers_intel80518liminaryArchitecturalSpecificationMay80_6120863/
http://archive.org/details/bitsavers_intel80518liminaryArchitecturalSpecificationMay80_6120863/
http://www.ikalogic.com/tut_8051_1.php
http://www.uc8051.com/instruction-set/all-instructions
http://www.edsim51.com/
http://www.edsim51.com/
http://www.dnatechindia.com/Tutorial/8051-Tutorial/
http://www.oreganosystems.at/?page_id=96
http://www.oreganosystems.at/?page_id=96
https://en.wikipedia.org/wiki/Free_On-line_Dictionary_of_Computing
https://en.wikipedia.org/wiki/Free_On-line_Dictionary_of_Computing
https://en.wikipedia.org/wiki/GNU_Free_Documentation_License

Chapter 5

Motorola 6800

Motorola MC6800 microprocessor

The 6800 (extquotedblsixty-eight hundred extquotedbl)
was an 8-bit microprocessor designed and first manufac-
tured byMotorola in 1974. TheMC6800microprocessor
was part of the M6800 Microcomputer System that also
included serial and parallel interface ICs, RAM, ROM
and other support chips. A significant design feature was
that the M6800 family of ICs required only a single five-
volt power supply at a time when most other micropro-
cessors required three voltages. The M6800 Microcom-
puter System was announced in March 1974 and was in
full production by the end of that year.[1][2]

The 6800 architecture and instruction set were influenced
by the then popular Digital Equipment Corporation PDP-
11mini computer.[3][4] The 6800 has a 16-bit address bus
that could directly access 64 KB of memory and an 8-bit
bi-directional data bus. It has 72 instructions with seven
addressing modes for a total of 197 opcodes. The orig-
inal MC6800 could have a clock frequency of up to 1
MHz. Later versions had a maximum clock frequency of
2 MHz.[5][6]

In addition to the ICs, Motorola also provided a complete
assembly language development system. The customer
could use the software on a remote timeshare computer or
on an in-house minicomputer system. The Motorola EX-
ORciser was a desktop computer built with the M6800
ICs that could be used for prototyping and debugging new
designs. An expansive documentation package included
datasheets on all ICs, two assembly language program-
ming manuals, and a 700-page application manual that
showed how to design a point-of-sale computer termi-
nal.[7]

The 6800 was popular in computer peripherals, test
equipment applications and point-of-sale terminals. The
MC6802, introduced in 1977, included 128 bytes of
RAM and an internal clock oscillator on chip. The
MC6801 and MC6805 included with RAM, ROM and
I/O on a single chip were popular in automotive applica-
tions.

5.1 Motorola’s history in semicon-
ductors

Main article: Motorola § History
GalvinManufacturing Corporation was founded in 1928;

Motorola began making semiconductors in the 1950s.

the company name was changed to Motorola in 1947.
They began commercial production of transistors at a new
US$1.5 million facility in Phoenix in 1955.[8]

24

https://en.wikipedia.org/wiki/8-bit
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Motorola
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/Read-only_memory
https://en.wikipedia.org/wiki/Power_supply
https://en.wikipedia.org/wiki/Digital_Equipment_Corporation
https://en.wikipedia.org/wiki/PDP-11
https://en.wikipedia.org/wiki/PDP-11
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Time-sharing
https://en.wikipedia.org/wiki/Minicomputer
https://en.wikipedia.org/wiki/Desktop_computer
https://en.wikipedia.org/wiki/Prototype
https://en.wikipedia.org/wiki/Debugging
https://en.wikipedia.org/wiki/Point-of-sale
https://en.wikipedia.org/wiki/Computer_terminal
https://en.wikipedia.org/wiki/Computer_terminal
https://en.wikipedia.org/wiki/Computer_peripheral
https://en.wikipedia.org/wiki/Electronic_test_equipment
https://en.wikipedia.org/wiki/Electronic_test_equipment
https://en.wikipedia.org/wiki/Motorola#History

5.2. DEVELOPMENT TEAM 25

Motorola’s transistors and integrated circuits were used
in-house for their communication, military, automotive
and consumer products and they were also sold to other
companies. By 1973 the Semiconductor Products Divi-
sion (SPD) had sales of $419 million and was the sec-
ond largest semiconductor company after Texas Instru-
ments.[9]

In the early 1970s Motorola started a project that de-
veloped their first microprocessor, the MC6800. This
was followed by single-chip microcontrollers such as the
MC6801 and MC6805.
In 1999 Motorola spun off their analog IC, digital IC and
transistor business to ON Semiconductor of Phoenix Ari-
zona. In 2004 they spun off their microprocessor business
to Freescale Semiconductor of Austin, Texas.

5.2 Development team

Block diagram of a M6800 microcomputer system

Motorola did not chronicle the development of the 6800
microprocessor the way that Intel did for their micropro-
cessors. In 2008 the Computer History Museum inter-
viewed four members of the 6800 microprocessor design
team. Their recollections can be confirmed and expanded
by magazine and journal articles written at the time.
TheMotorola microprocessor project began in 1971 with
a team composed of designer Tom Bennett, engineering
director Jeff LaVell, product marketer Link Young and
systems designers Mike Wiles, Gene Schriber and Doug
Powell.[10] They were all located in Mesa, Arizona. By
the time the project was finished, Bennett had 17 chip de-
signers and layout people working on five chips. LaVell
had 15 to 20 system engineers and there was another ap-

plications engineering group of similar size.[11]

Tom Bennett had a background in industrial controls and
had worked for Victor Comptometer in the 1960s design-
ing the first electronic calculator to useMOS ICs, the Vic-
tor 3900.[12] In May 1969 Ted Hoff showed Bennett early
diagrams of the Intel 4004 to see if it would meet their
calculator needs. Bennett joined Motorola in 1971 to de-
sign calculator ICs. He was soon assigned as the chief
architect of the microprocessor project that produced the
6800.[13] Others have taken credit for designing the 6800.
In September 1975 Robert H. Cushman, EDN magazine’s
microprocessor editor, interviewed Chuck Peddle about
MOS Technology’s new 6502 microprocessor. Cushman
then asked “Tom Bennett, master architect of the 6800,”
to comment about this new competitor.[14] After the 6800
project Bennett worked on automotive applications and
Motorola became a major supplier of microprocessors
used in automobiles.
Jeff LaVell joined Motorola in 1966 and worked in the
computer industry marketing organization. Jeff had pre-
viously worked for Collins Radio on their C8500 com-
puter that was built with small scale ECL ICs. In 1971 he
led a group that examined the needs of their existing cus-
tomers such as Hewlett Packard, National Cash Register,
Control Data Corporation (CDC), and Digital Equipment
Corporation. They would study the customer’s products
and tried to identify functions that could be implemented
in larger integrated circuits at a lower cost. The result
of the survey was a family of 15 building blocks; each
could be implemented in an integrated circuit.[11] Some
of these blocks were implemented in the initial M6800
release and more were added over the next few years. To
evaluate the 6800 architecture while the chip was being
designed, Jeff’s team built an equivalent circuit using 451
small scale TTL ICs on five 10 by 10 inch (25 by 25 cm)
circuit boards. Later they reduced this to 114 ICs on one
board by using ROMs and MSI (medium scale integra-
tion) logic devices.[15]

John Buchanan was a memory designer at Motorola when
Bennett asked him to design a voltage doubler for the
6800. Typical n-channel MOS IC’s required three power
supplies: −5 volts, +5 volts and +12 volts. The M6800
family was to use only one, +5 volts. It was easy to elimi-
nate the−5 volt supply but the MOS transistors needed a
supply of 10 to 12 volts. This on-chip voltage doubler
would supply the higher voltage and Buchanan did the
circuit design, analysis and layout for the 6800 micropro-
cessor. He received patents on the voltage doubler and
the 6800 chip layout.[16][17] Rod Orgill assisted Buchanan
with analyses and 6800 chip layout. Later Orgill would
design the MOS Technology 6501 microprocessor that
was socket compatible with the 6800.
Bill Lattin joined Motorola in 1969 and his group pro-
vided the computer simulation tools for characterizing the
new MOS circuits in the 6800. Lattin and Frank Jenk-
ins had both attended UC Berkeley and studied computer

https://en.wikipedia.org/wiki/Transistor
https://en.wikipedia.org/wiki/Texas_Instruments
https://en.wikipedia.org/wiki/Texas_Instruments
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/ON_Semiconductor
https://en.wikipedia.org/wiki/Freescale_Semiconductor
https://en.wikipedia.org/wiki/Computer_History_Museum
https://en.wikipedia.org/wiki/Victor_Technology
https://en.wikipedia.org/wiki/Intel_4004
https://en.wikipedia.org/wiki/Robert_H._Cushman
https://en.wikipedia.org/wiki/MOS_Technology_6502
https://en.wikipedia.org/wiki/Emitter-coupled_logic
https://en.wikipedia.org/wiki/Voltage_doubler
https://en.wikipedia.org/wiki/MOS_Technology_6501

26 CHAPTER 5. MOTOROLA 6800

circuit simulators under Donald Pederson, the designer
of the SPICE circuit simulator.[18] Motorola’s simulator,
MTIME, was an advanced version of the TIME circuit
simulator that Jenkins had developed at Berkeley. The
group published a technical paper, “MOS-device mod-
eling for computer implementation” in 1973 describing
a “5-V single-supply n-channel technology” operating at
1 MHz. They could simulate a 50 MOSFET circuit on
an IBM 370/165 mainframe computer.[19] In November
1975, Lattin joined Intel to work on their next generation
microprocessor.[20]

Bill Mensch joined Motorola in 1971 after graduating
from the University of Arizona. He had worked sev-
eral years as an electronics technician before earning his
BSEE degree. The first year at Motorola was a series of
three-month rotations through four different areas. Men-
sch did a flowchart for a modem that would become the
6860. He also worked the application group that was
defining the M6800 system. After this training year, he
was assigned to the 6820 Peripheral Interface Adapter
(PIA) development team. Mensch was a major contrib-
utor to the design of this chip and received a patent on
the IC layout[21] and was named as a co-inventor of seven
other M6800 system patents.[22] Later Mensch would de-
sign the MOS Technology 6502 microprocessor.

MIKBUG was part of the extensive M6800 microcomputer sup-
port developed by Motorola’s Application Engineering Group.

Mike Wiles was a design engineer in Jeff LaVell’s group
and made numerous customer visits with Tom Bennett
during 6800 product definition phase. He is listed as an
inventor on eighteen 6800 patents but is best known for
a computer program, MIKBUG.[23] This was a monitor
for a 6800 computer system that allowed the user to ex-
amine the contents of RAM and to save or load pro-
grams to tape. This 512 byte program occupied half of
an MCM6830 ROM.[24] This ROM was used in the Mo-
torola MEK6800 design evaluation kit and early hobby
computer kits.[25] Wiles stayed with Motorola, moved to
Austin and helped design the MC6801 microcontroller
that was released in 1978.[26]

Chuck Peddle joined the design team in 1973 after the

6800 processor design was done but he contributed to
overall system design and to several peripheral chips, par-
ticularly the 6820 (PIA) parallel interface.[27] Peddle is
listed as an inventor on sixteen Motorola patents, most
have six or more co-inventors.[28] Like the other engi-
neers on the team, Peddle visited potential customers and
solicited their feedback. Peddle and John Buchanan built
one of the earliest 6800 demonstration boards.[29] In Au-
gust 1974 Chuck Peddle left Motorola and joined a small
semiconductor company in Pennsylvania, MOS Technol-
ogy. There he led the team that designed the 6500 mi-
croprocessor family.

5.3 MC6800 microprocessor de-
sign

A Motorola MC6800 microprocessor registers and I/O lines

The Motorola 6800 and the Intel 8080 were designed at
the same time and were similar in function. The 8080
was a superset of the Intel 8008, which was based on the
Datapoint 2200 processor. The 6800 architecture was
modeled after the DEC PDP-11 processor.[4] Both were
TTL compatible, had an 8-bit bidirectional data bus, a 16-
bit stack pointer, a 16-bit address bus that could address
64 KB of memory, and came in a 40-pin DIP package.
The 6800 had two accumulators and a 16-bit index regis-
ter. The direct addressing mode allowed fast access to the
first 256 bytes of memory. I/O devices were addressed
as memory so there were no special I/O instructions. The
8080 had more internal registers and instructions for ded-
icated I/O ports. When the 8080 was reset, the program
counter was cleared and the processor started at mem-
ory location 0000. The 6800 loaded the program counter
from the highest address and started at the memory loca-
tion stored there.[30] The 6800 had a three-state control
that would disable the address bus to allow another device
direct memory access. A disk controller could therefore
transfer data into memory with no load on the proces-
sor. It was even possible to have two 6800 processors ac-
cess the same memory.[31] However, in practice systems
of such complexity usually required the use of external
bus transceivers to drive the system bus; in such circuits
the on-processor bus control was disabled entirely in favor

https://en.wikipedia.org/wiki/Donald_Pederson
https://en.wikipedia.org/wiki/SPICE
https://en.wikipedia.org/wiki/Bill_Mensch
https://en.wikipedia.org/wiki/Peripheral_Interface_Adapter
https://en.wikipedia.org/wiki/MOS_Technology_6502
https://en.wikipedia.org/wiki/Resident_monitor
https://en.wikipedia.org/wiki/Chuck_Peddle
https://en.wikipedia.org/wiki/MOS_Technology
https://en.wikipedia.org/wiki/MOS_Technology
https://en.wikipedia.org/wiki/Intel_8080
https://en.wikipedia.org/wiki/Datapoint_2200
https://en.wikipedia.org/wiki/PDP-11
https://en.wikipedia.org/wiki/Transistor–transistor_logic
https://en.wikipedia.org/wiki/Dual_in-line_package
https://en.wikipedia.org/wiki/Direct_memory_access

5.5. M6800 FAMILY INTRODUCTION 27

of using the similar capabilities of the bus transceiver.[32]
In contrast, the 6802 dispensed with this on-chip control
entirely in order to free up pins for other functions in the
same 40-pin package as the 6800, but this functionality
could still be achieved using an external bus transceiver.
MOS ICs typically used dual clock signals (a two-phase
clock) in the 1970s. These were generated externally
for both the 6800 and the 8080.[33] The next generation
of microprocessors incorporated the clock generation on
chip. The 8080 had a 2 MHz clock but the processing
throughput was similar to the 1MHz 6800, since the 8080
required more clock cycles to execute a processor instruc-
tion than the 6800. The 6800 had a minimum clock
rate of 100 kHz, while the 8080 had no lower limit and
could be halted (effectively a 0 Hz clock speed). Higher-
speed versions of both microprocessors were released by
1976.[34]

Other divisions in Motorola developed components for
the M6800 family. The Components Products Depart-
ment designed the MC6870 two-phase clock IC, and the
Memory Products group provided a full line of ROMs
and RAMs. The CMOS group’s MC14411 Bit Rate Gen-
erator provided a 75 to 9600 baud clock for the MC6850
serial interface. The buffers for address and data buses
were standard Motorola products. Motorola could sup-
ply every IC, transistor, and diode necessary to build an
MC6800-based computer.

5.4 MOS ICs

A silicon wafer holding many integrated circuit chips

The first-generation metal–oxide–semiconductor (MOS)
chips used p-channel field-effect transistors, known as p-
channel MOSFETs (p-channel describes the configura-
tion of the transistor). These ICs were used in calculators
and in the first microprocessor, the Intel 4004. They were

easy to produce but were slow and difficult to interface to
the popular TTL digital logic ICs. An n-channel MOS
integrated circuit could operate two or three times faster
and was compatible with TTL. They were much more
difficult to produce because of an increased sensitivity
to contamination that required an ultra clean production
line and meticulous process control.[35] Motorola did not
have an n-channel MOS production capability and had to
develop one for the 6800 family.
Motorola’s n-channel MOS test integrated circuits were
complete in late 1971 and these indicated the clock rate
would be limited to 1 MHz. These used “enhancement-
mode” MOS transistors. There was a newer fabrica-
tion technology that used “depletion-mode” MOS tran-
sistors as loads, which would allow smaller and faster cir-
cuits (this was also known as depletion-load nMOS). The
“depletion-mode” processing required extra steps so Mo-
torola decided to stay with “enhancement-mode” for the
new single-supply-voltage design. The 1 MHz clock rate
meant the chip designers would have to come up with sev-
eral architectural innovations to speed up the micropro-
cessor throughput.[13] These resulting circuits were faster
but required more area on the chip.[36]

In the 1970s, semiconductors were fabricated on 3 inch
(75 mm) diameter silicon wafers. Each wafer could pro-
duce 100 to 200 integrated circuit chips or dies. The tech-
nical literature would state the length and width of each
chip in “mils” (0.001 inch). The Intel 8080 microproces-
sor chip size was 164 mils x 191 mils (4.1 mm by 4.9
mm).[37] The current industry practice is to state the chip
area so the size of the 8080 chip would be 19.7 mm2.
Processing wafers requiredmultiple steps and flawswould
appear at various locations on the wafer during each step.
The larger the chip the more likely it would encounter
a defect. The percentage of working chips or yield be-
gan to decline for chips larger than 160 mils (4 mm) on a
side. The target size for the 6800 was 180 mils (4.6 mm)
on each side but the final size was 212 mils (5.4 mm)
with an area of (29.0 mm2). At 180 mils, a 3-inch (76
mm) wafer will hold about 190 chips, 212 mils reduces
that to 140 chips. At this size the yield may be 20% or
28 chips per wafer.[38][39] The Motorola 1975 annual re-
port highlights the new MC6800 microprocessor but has
several paragraphs on the “MOS yield problems.”[9] The
yield problem was solved with design revision started in
1975 to use depletion mode in the M6800 family devices.
The 6800 die size was reduced to 160 mils (4 mm) per
side with an area of 16.5 mm2. This also allowed faster
clock speeds, the MC68A00 would operate at 1.5 MHZ
and theMC68B00 at 2.0MHz. The new parts were avail-
able in July 1976.[26][40]

https://en.wikipedia.org/wiki/Two-phase_clock
https://en.wikipedia.org/wiki/Two-phase_clock
https://en.wikipedia.org/wiki/Baud
https://en.wikipedia.org/wiki/MOSFET
https://en.wikipedia.org/wiki/Transistor–transistor_logic
https://en.wikipedia.org/wiki/Depletion-load_nMOS
https://en.wikipedia.org/wiki/Wafer_(electronics)

28 CHAPTER 5. MOTOROLA 6800

An early advertisement for the Motorola’s M6800 family micro-
computer system

5.5 M6800 family introduction

The March 7, 1974 issue of Electronics had a two-
page story on the Motorola MC6800 microprocessor
along with the MC6820 Peripheral Interface Adapter,
the MC6850 communications interface adapter, the
MCM6810 128 byte RAM and theMCM6830 1024 byte
ROM.[1] This was followed by an eight-page article in
the April 18, 1974 issue authored by the Motorola de-
sign team.[41] This issue also had an article introducing
the Intel 8080[42]

The Intel 8080 and the Motorola MC6800 processors
both began layout around December 1972. The first
working 8080 chips were produced January 1974[43] and
the first public announcement was in February 1974.[37]
The 8080 used same three voltage N-channel MOS pro-
cess as Intel’s existing memory chips allowing full pro-
duction to begin that April.
The first workingMC6800 chips were produced in Febru-
ary 1974 and engineering samples were given to se-
lect customers. Hewlett Packard in Loveland, Colorado
wanted theMC6800 for a new desktop calculator and had
a prototype system working by June.[44][45] The MC6800
used a new single-voltage N-channel MOS process that
proved to be very difficult to implement. The M6800 mi-
crocomputer system was finally in production by Novem-
ber 1974. Motorola matched Intel’s price for single mi-
croprocessor, $360.[46][47] (The IBM System/360 was a
well-known computer at this time.) In April 1975 the
MEK6800D1 microcomputer design kit was offered for
$300. The kit included all six chips in the M6800 family
plus application and programming manuals.[48] The price
of a single MC6800 microprocessor was $175.
Link Young was the product marketer that developed the
total system approach for the M6800 family release. In
addition to releasing a full set of support chips with the
6800 microprocessor, Motorola offered a software and
hardware development system. The software develop-
ment tools were available on remote time-sharing com-
puters or the source code was available so the customer

could use an in-house computer system. The software
that would run on a microprocessor system was typically
written in assembly language. The development system
consisted of a text editor, assembler and a simulator.[49]
This allowed the developer to test the software before the
target system was complete. The hardware development
was a desktop computer built with M6800 family CPU
and peripherals known as the EXORcisor.[41] Motorola
offered a three to five-day microprocessor design course
for the 6800 hardware and software.[50] This systems-
oriented approach became the standard way new micro-
processor were introduced.[51]

5.6 Design team breakup

The principal design effort on the M6800 family was
complete in mid-1974, and many engineers left the group
or the company. Several factors led to the break-up of the
design group.
Motorola had opened a new MOS semiconductor facility
in Austin Texas. The entire engineering team was sched-
uled to relocate there in 1975.[52] Many of the employees
liked living in the Phoenix suburb of Mesa and were very
wary about moving to Austin. The team leaders were un-
successful with their pleas to senior management on de-
ferring the move.[53]

A recession hit the semiconductor industry in mid-1974
resulting in thousands of layoffs. A November 1974 issue
of Electronicsmagazine reports that Motorola had laid off
4,500 employees, Texas Instruments 7,000 and Signetics
4,000.[54] Motorola’s Semiconductor Products Division
would lose thirty million dollars in the next 12 months
and there were rumors that the IC group would be sold
off. Motorola did not sell the division but they did change
the management and organization.[55] By the end of 1974
Intel fired almost a third of its 3,500 employees.[56] The
MOS IC business rebounded but job security was not
taken for granted in 1974 and 1975.
Chuck Peddle (and other Motorola engineers) had been
visiting customers to explain the benefits of microproces-
sors. Both Intel and Motorola had initially set the price
of a single microprocessor at $360. Many customers
were hesitant to adopt this new microprocessor technol-
ogy with such a high price tag. (The actual price for pro-
duction quantities was much lower.) In mid-1974 Peddle
proposed a simplified microprocessor that could be sold
at a much lower price. Motorola’s “total product family”
strategy did not focus on the price of MPU but on reduc-
ing the customer’s total design cost.[57][58] Their immedi-
ate goal was to get their completed system into production
and they would work on improvements in 1975.
Peddle continued working for Motorola while looking for
investors for his new microprocessor concept.[59] In Au-
gust 1974 Chuck Peddle left Motorola and joined a small
semiconductor company in Pennsylvania, MOS Technol-

https://en.wikipedia.org/wiki/Electronics_(magazine)
https://en.wikipedia.org/wiki/IBM_System/360
https://en.wikipedia.org/wiki/Time-sharing
https://en.wikipedia.org/wiki/Texas_Instruments
https://en.wikipedia.org/wiki/Signetics

5.7. MOVE TO AUSTIN 29

Introductory advertisement for the MOS Technology MCS6501
microprocessor in August 1975

ogy. He was followed by seven other Motorola engineers:
Harry Bawcum, Ray Hirt, Terry Holdt, Mike James, Will
Mathis, Bill Mensch and Rod Orgill.[27] Peddle’s group
at MOS Technology developed two new microprocessors
that were compatible with the Motorola peripheral chips
like the 6820 PIA. Rod Orgill designed the MCS6501
processor that would plug into a MC6800 socket and Bill
Mensch did the MCS6502 that had the clock generation
circuit on chip. These microprocessors would not run
6800 programs because they had a different architecture
and instruction set. The major goal was a microprocessor
that would sell for under $25. This would be done by re-
moving non-essential features to reduce the chip size. An
8-bit stack pointer was used instead of a 16-bit one. The
second accumulator was omitted. The address buffers did
not have a three-state mode for Direct Memory Access
(DMA) data transfers.[60] The goal was to get the chip
size down to 153 mils x 168 mils (3.9 mm x 4.3 mm).[14]

Chuck Peddle was a very effective spokesman and the
MOS Technology microprocessors were extensively cov-
ered in the trade press. One of the earliest was a full-
page story on the MCS6501 and MCS6502 microproces-
sors in the July 24, 1975 issue of Electronicsmagazine.[61]
Stories also ran in EE Times (August 24, 1975),[62] EDN
(September 20, 1975), Electronic News (November 3,
1975) and Byte (November 1975). Advertisements for
the 6501 appeared in several publications the first week
of August 1975. The 6501 would be for sale at the
WESCON trade show in San Francisco, September 16–
19, 1975, for $25 each.[63] In September 1975 the adver-
tisements included both the 6501 and the 6502 micropro-
cessors. The 6502 would only cost $20.[64]

Motorola responded to MOS Technology’s $20 micro-
processor by immediately reducing the single-unit price
of the 6800microprocessor from $175 to $69[65] and then
suing MOS Technology in November 1975.[66] Motorola
claimed that the eight former Motorola engineers used
technical information developed at Motorola in the de-
sign of the 6501 and 6502 microprocessors. MOS Tech-
nology’s other business, calculator chips, was declining
due to a price war with Texas Instruments so their finan-

cial backer, Allen-Bradley, decided to limit the possible
losses and sold the assets of MOS Technology back to the
founders.[27] The lawsuit was settled in April 1976 with
MOS Technology dropping the 6501 chip that would plug
into a Motorola 6800 socket and licensing Motorola’s
peripheral chips.[67][68] Motorola reduced the single-unit
price of the 6800 to $35.[35][69]

The MOS Technology vs. Motorola lawsuit has devel-
oped a David and Goliath narrative over the years. One
point was the Motorola did not have patents on the tech-
nology. This was technically true when the lawsuit was
filed in late 1975. On October 30, 1974, before the 6800
was released, Motorola filed numerous patents applica-
tions on the microprocessor family and was granted over
twenty patents. The first was to Tom Bennett on June
8, 1976 for the 6800 internal address bus.[13] The sec-
ond was to Bill Mensch on July 6, 1976 for the 6820
chip layout.[21] Many of these patents named several of
the departing engineers as co-inventors. These patents
covered the 6800 bus and how the peripheral chips in-
terfaced with the microprocessor.[70] (Intel had a similar
incident. Federico Faggin, who had led the development
of the Intel’s first microprocessor, the 4004, and it latest,
the 8080, grew restless under the management changes at
Intel. Faggin and another Intel engineer, Ralph Unger-
mann, began talking about starting up their own micro-
processor company. Faggin and Ungermann left Intel and
started Zilog in November 1974. Masatoshi Shima, the
designer of the Intel 8080, joined Zilog in February 1975
and they obtained funding from Exxon’s venture capital
group in June 1975. Zilog decided to make a superset
of the Intel 8080 that also incorporated features from the
6800 and others. The Z80 only required a single 5 volt
power supply and a single-phase clock input. It was the
first microprocessor to offer built-in support for dynamic
RAM.[30][71][72][73])

5.7 Move to Austin

Gary Daniels was designing ICs for electronic wrist-
watches when Motorola shut down their Timepiece Elec-
tronics Unit. Tom Bennett offered him a job in the mi-
croprocessor group in November 1974. Bennett did not
want to leave the Phoenix area so Gary Daniels managed
the microprocessor development in Austin. (Daniels was
the microprocessor design manager for the next ten years
before he was promoted to a vice president.)
The first task was to redesign the 6800 MPU to improve
the manufacturing yield and to operate at a faster clock.
This design used depletion-mode technology and was
known internally as the MC6800D. The transistor count
went from 4000 to 5000 but the die area was reduced
from 29.0 mm2 to 16.5 mm2. The maximum clock rate
for selected parts doubled to 2 MHz. The other chips in
the M6800 family were also redesigned to use depletion-
mode technology. The Peripheral Interface Adapter had

https://en.wikipedia.org/wiki/EE_Times
https://en.wikipedia.org/wiki/Allen-Bradley
https://en.wikipedia.org/wiki/Goliath
https://en.wikipedia.org/wiki/Federico_Faggin
https://en.wikipedia.org/wiki/Zilog
https://en.wikipedia.org/wiki/Masatoshi_Shima
https://en.wikipedia.org/wiki/Zilog_Z80
https://en.wikipedia.org/wiki/Dynamic_RAM
https://en.wikipedia.org/wiki/Dynamic_RAM

30 CHAPTER 5. MOTOROLA 6800

The M6800 family chips were redesigned to use depletion-mode
technology. The MC6820 PIA became the MC6821.

a slight change in the electrical characteristics of the I/O
pins so the MC6820 became the MC6821.[74] These new
IC were completed in July 1976.
A new low-cost clock generator chip, the MC6875, was
released in 1977. It replaced the $35 MC6870 hybrid IC.
TheMC6875 came in a 16-pin dip package and could use
quartz crystal or a resistor capacitor network.[75]

Another project was incorporating 128 bytes of RAMand
the clock generator on a single 11,000-transistor chip.
The MC6802 microprocessor was released in March
1977. The companion MC6846 chip had 2048 byte
ROM, an 8-bit bidirectional port and a programmable
timer. This was a two-chip microcomputer. The 6802
has an on-chip oscillator that uses an external 4 MHz
quartz crystal to produce the two-phase 1 MHz clock.
The internal 128 byte RAM could be disabled by ground-
ing a pin and devices with defective RAM were sold as a
MC6808.[76]

A series of peripheral chip were introduced by 1978. The
MC6840 programmable counter had three 16-bit binary
counters that could be used for frequency measurement,
event counting, or interval measurement. The MC6844
Direct Memory Access Controller could transfer data
from an I/O controller to RAM without loading down
the MC6800 microprocessor. The MC6845 CRT Con-
troller provided the control logic for a character based
computer terminal. The 6845 had support for a light
pen, an alternative to a computer mouse. This was a very
popular chip and was even used in the original IBM PC
Monochrome Display Adapter with the Intel 8088 16-bit
microprocessor in 1981, and in the follow-up IBM Color
Graphics Adapter for the original PC and successors; the
IBM Enhanced Graphics Adapter card contained custom
IBM chips that emulated the Motorola 6845, with minor
differences.
The MC6801 was a single-chip microcomputer with a
6802 CPU with 128 bytes of RAM, a 2 KB ROM, a

16-bit timer, 31 programmable parallel I/O lines, and a
serial port. It could also use the I/O lines as data and
address buses to connect to standard M6800 peripherals.
The 6801 would execute 6800 code but it had ten addi-
tional instructions and the execution time of key instruc-
tions was reduced. The two 8-bit accumulators could act
as a single 16-bit accumulator for double precision ad-
dition, subtraction and multiplication.[77] It was initially
designed for automotive use with General Motors as the
lead customer. The first application was a trip computer
for the 1978 Cadillac Seville.[78] This 35,000 transistor
chip was too expensive for wide-scale adoption in auto-
mobiles so a reduced function MC6805 single-chip mi-
crocomputer was designed.
The MC6809 was the most advanced 8-bit microproces-
sor Motorola produced. It had a new instruction set that
was similar to the 6800 but abandoned op-code compati-
bility for improved performance and high-level language
support; the two were software compatible in that assem-
blers could (and generally did) generate code which was
equivalent to 6800 opcodes the 6809 did not directly em-
ulate. In that sense, the 6809was upward compatible with
the 6800. The 6809 had many 16-bit operations, includ-
ing the first 8-bit multiply instruction (generating a 16 bit
product) in a microprocessor, and two 16-bit index reg-
isters and stack pointers.[79]

5.8 Personal computers

The SWTPC 6800 computer system, introduced in November
1975, was based on the MEK6800 design evaluation kit chip set.

The MITS Altair 8800, the first successful personal com-
puter, used the Intel 8080 microprocessor and was fea-
tured on the January 1975 cover of Popular Electron-
ics.[80] The first personal computers using the Motorola
6800 were introduced in late 1975. Sphere Corporation
of Bountiful, Utah ran a quarter-page advertisement in
the July 1975 issue of Radio-Electronics for a 650 USD
computer kit with a 6800 microprocessor, 4 kilobytes of
RAM, a video board and a keyboard. This would dis-
play 16 lines of 32 characters on a TV or monitor.[81]

https://en.wikipedia.org/wiki/Light_pen
https://en.wikipedia.org/wiki/Light_pen
https://en.wikipedia.org/wiki/IBM_Monochrome_Display_Adapter
https://en.wikipedia.org/wiki/IBM_Color_Graphics_Adapter
https://en.wikipedia.org/wiki/IBM_Color_Graphics_Adapter
https://en.wikipedia.org/wiki/IBM_Enhanced_Graphics_Adapter
https://en.wikipedia.org/wiki/6809
https://en.wikipedia.org/wiki/Micro_Instrumentation_and_Telemetry_Systems
https://en.wikipedia.org/wiki/Altair_8800
https://en.wikipedia.org/wiki/Popular_Electronics
https://en.wikipedia.org/wiki/Popular_Electronics

5.9. EXAMPLE CODE 31

The Sphere computer kits began shipping in November
1975.[82] Southwest Technical Products Corporation of
San Antonio, Texas, officially announced their SWTPC
6800 Computer System in November 1975. Wayne
Green visited SWTPC in August 1975 and described
the SWTPC computer kit complete with photos of a
working system in the October 1975 issue of 73. The
SWTPC 6800 was based on the Motorola MEK6800 de-
sign evaluation kit chip set and used the MIKBUG ROM
Software.[25] The MITS Altair 680 was on the cover of
the November 1975 issue of Popular Electronics. The Al-
tair 680 used a 6800 microprocessor and also had a front
panel with toggle switches and LEDs. The initial design
had to be revised and first deliveries of the Altair 680B
were in April 1976.[83]

Sphere was a small startup company and had difficulties
delivering all of the products they announced. They filed
for a Chapter 11 bankruptcy in April 1977.[84] The Al-
tair 680B was popular but MITS focused most of the re-
sources on their Altair 8800 computer system and they
exited the hobby market in 1978. The Southwest Tech-
nical Products computer was the most successful 6800
based personal computer.[85][86] Other companies, for in-
stance, Smoke signal Broadcasting (California), Gimix
(Chicago), Midwest Scientific (Olathe, Kansas), and He-
lix Systems (Hazelwood, Missouri), started producing
SWTPC 6800 compatible boards and complete systems.
The 8080 systems were far more popular than the 6800
ones.[87]

The Tektronix 4051 graphics computing system used a 6800 mi-
croprocessor.

The Tektronix 4051 Graphics Computing System was in-

troduced in October 1975. This was a professional desk-
top computer that had a 6800 microprocessor with up to
32 KB of user RAM, 300 KBmagnetic tape storage, BA-
SIC in ROM and a 1024 by 780 graphics display. The
Tektronix 4051 sold for $7000, rather higher than the
personal computers using the 6800.[88]

By 1977 personal computers were fully assembled and
ready to use, not do-it-yourself kits. The Apple II and
Commodore PET were based on the MOS Technology
6502 microprocessor designed by former Motorola en-
gineers. The Radio Shack TRS-80 used the Zilog Z80
microprocessor designed by former Intel engineers Fed-
erico Faggin and Masatoshi Shima.
The 6800 processor was also used in theAPF Imagination
Machine game console.
The architecture and instruction set of the 6800 were easy
for beginners to understand and Heathkit developed a mi-
croprocessor course and the ET3400 6800 trainer. The
course and trainer proved popular with individuals and
schools.[89]

Motorola’s next generation 8-bit microprocessor archi-
tecture, the MC6809 (1979), was used in the Radio
Shack TRS-80 Color Computer and the compatible
Dragon 32/64 which was sold in Europe. SWTPC also
released a 6809 based system, the s/09, as did other SS-
50 vendors. The 6809 and the 16/32 bit 68000 were in-
compatible with the instruction set of the 6800, but could
use 6800-family peripheral chips.
An clone of the 6800 processor was used in the Bulgar-
ian computer Pyldin-601. About 35000 of these comput-
ers were produced from 1988 to 1992. They were used
mainly for educational and industrial purposes.

5.9 Example code

The following 6800 assembler source code is for a sub-
routine named memcpy that copies a block of data bytes
of a given size from one location to another. The data
block is copied one byte at a time, from lowest address to
highest.
; memcpy -- ; Copy a block of memory from one location
to another. ; ; Entry parameters ; cnt - Number of
bytes to copy ; src - Address of source data block ; dst -
Address of target data block cnt dw $0000 src dw $0000
dst dw $0000 memcpy public ldab cnt+1 ;Set B = cnt.L
beq check ;If cnt.L=0, goto check loop ldx src ;Set IX =
src ldaa ix ;Load A from (src) inx ;Set src = src+1 stx src
ldx dst ;Set IX = dst staa ix ;Store A to (dst) inx ;Set dst
= dst+1 stx dst decb ;Decr B bne loop ;Repeat the loop
stab cnt+1 ;Set cnt.L = 0 check tst cnt+0 ;If cnt.H=0,
beq done ;Then quit dec cnt+0 ;Decr cnt.H decb ;Decr B
bra loop ;Repeat the loop done rts ;Return

https://en.wikipedia.org/wiki/SWTPC
https://en.wikipedia.org/wiki/Wayne_Green
https://en.wikipedia.org/wiki/Wayne_Green
https://en.wikipedia.org/wiki/73_(magazine)
https://en.wikipedia.org/wiki/Tektronix_405x
https://en.wikipedia.org/wiki/Apple_II_series
https://en.wikipedia.org/wiki/Commodore_PET
https://en.wikipedia.org/wiki/TRS-80
https://en.wikipedia.org/wiki/Zilog_Z80
https://en.wikipedia.org/wiki/APF_Imagination_Machine
https://en.wikipedia.org/wiki/APF_Imagination_Machine
https://en.wikipedia.org/wiki/Heathkit
https://en.wikipedia.org/wiki/Motorola_6809
https://en.wikipedia.org/wiki/TRS-80_Color_Computer
https://en.wikipedia.org/wiki/Dragon_32/64
https://en.wikipedia.org/wiki/Motorola_68000
https://en.wikipedia.org/wiki/Assembly_language

32 CHAPTER 5. MOTOROLA 6800

5.10 Peripherals

List from “Motorola Microcomputer Components”,
November 1978

5.11 Second sources

A common requirement for manufacturing companies
was to require two or more sources for every part in the
products they made. This ensured they could get parts if
a supplier had financial problems or a disaster. Initially
Motorola selected American Microsystems Inc (AMI) as
a second source for the M6800 family. Hitachi, Fujitsu,
Fairchild, Rockwell and Thomson Semiconductors were
added later.

• AMI S6800 MPU

• Fairchild F6802P and an AMI S6820 PIA

5.12 Oral histories

• “Intel 8080 Microprocessor Oral History Panel”
Steve Bisset, Federico Faggin, Hal Feeney, Edward
Gelbach, Ted Hoff, Stan Mazor, Masatoshi Shima,
Computer History Museum, April 26, 2007, mod-
erator: David House.

• “Zilog Z80 Microprocessor Oral History Panel”
Federico Faggin, Masatoshi Shima, Ralph Unger-
mann, Ralph Ungermann. Computer History Mu-
seum, April 27, 2007, moderator: Michael Slater.

• “Motorola 6800 Oral History Panel” Thomas H.
Bennett, John Ekiss, William (Bill) Lattin, Jeff
Lavell. Computer History Museum, March 28,
2008, moderator: David Laws.

• Interview with William Mensch Stanford and the
Silicon Valley Project, October 9, 1995. Transcript

5.13 References

[1] “Motorola joins microprocessor race with 8-bit entry”.
Electronics (New York: McGraw-Hill) 47 (5): pp. 29–
30. March 7, 1974.

[2] “Microcomputer system runs on one 5-V supply”. Elec-
tronics (New York: McGraw-Hill) 47 (26): pp.114–115.
December 26, 1974. “Motorola’s M6800 microcomputer
system, which can operate from a single 5-volt supply, is
moving out of the sampling stage and into full produc-
tion.” The small-quantity price of the MC6800 is $360.
The MC6820 PIA cost $28.

[3] “TheDigital Age”. Electronics (NewYork: McGraw-Hill)
53 (9): p. 377. April 17, 1980. “It introduced its 6800
microprocessor in March 1974. The device needed only
one +5-volt power supply, in contrast with the Intel 8080’s
three. And it had an untangled bus structure like the one
the Digital Equipment Corp. put in its PDP-11 minicom-
puters.”

[4] Ceruzzi, Paul E. (2003). A History of Modern Comput-
ing. Cambridge, MA: MIT Press. p. 244. ISBN 0-
262-53203-4. “The microprocessor phenomenon passed
the PDP-11 by, even though elements of its architecture
turned up in microprocessor designs (especially the Mo-
torola 6800).” - Author interviewed Gordon Bell, designer
of the PDP-11

[5] M6800 Microcomputer System Design Data. Phoenix AZ:
Motorola. 1976.

[6] Daniels, R. Gary; William C. Bruce (April 1985). “Built-
In Self-Test Trends in Motorola Microprocessors”. IEEE
Design & Test of Computers (IEEE) 2 (2): pp. 64–
71. doi:10.1109/MDT.1985.294865. extquotedbl…
MC6800, which was introduced in 1974. The device was
built in six-micron NMOS technology with about 4000
transistors.”

[7] M6800 Microprocessor Applications Manual. Phoenix
AZ: Motorola. 1975.

[8] Motorola 1955 Annual Report. Chicago: Motorola. 1956.
p. 9.

[9] Motorola 1975 Annual Report. Chicago: Motorola.
March 1976.

[10] Malone, Michael S. (1995). The Microprocessor: A Biog-
raphy. New York: Springer-Verlag. pp. 141–147. ISBN
0-387-94342-0.

[11] Motorola 6800 Oral History (2008)

[12] “1964 - First Commercial MOS IC Introduced”. Com-
puter History Museum. 2007. Retrieved August 9, 2010.

[13] Bennett, Thomas H., “Split low order internal address bus
for microprocessor”, US Patent 3962682, issued June 8,
1976. Bennett is listed as an inventor on 18M6800 family
patents.

[14] Cushman, Robert H. (September 20, 1975). “2-1/2
Generation μP’s -$10 Parts That Perform Like Low-End
Mini’s”. EDN (Boston: Cahners Publishing) 20 (17): pp.
36–42. About the MOS Technology 6502 on page 40. “It
measures just 168x183 mils now and will be shrunk 10%
to 153x168 mils soon.”

[15] Electronics April 18, 1974. Photo of boards on page 82,
description of circuit on page 93.

[16] Buchanan, John K., “MOS DC Voltage booster circuit”,
US Patent 3942047, issued March 2, 1976.

[17] Buchanan, JohnK., “Chip topography forMOS integrated
circuitry microprocessor chip”, US Patent 3987418, is-
sued October 19, 1976.

http://www.computerhistory.org/collections/accession/102658123
http://www.computerhistory.org/collections/accession/102658073
http://www.computerhistory.org/collections/accession/102702020
http://silicongenesis.stanford.edu/complete_listing.html
http://silicongenesis.stanford.edu/transcripts/mensch.htm
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-262-53203-4
https://en.wikipedia.org/wiki/Special:BookSources/0-262-53203-4
https://en.wikipedia.org/wiki/Gordon_Bell
https://en.wikipedia.org/wiki/PDP-11
https://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1109%2FMDT.1985.294865
https://www.motorola.com/staticfiles/Business/Corporate/US-EN/docs/history-motorola-annual-report-archive-1955-4p12mb-24.pdf
https://www.motorola.com/staticfiles/Business/Corporate/US-EN/docs/history-motorola-annual-report-archive-1975-7p61mb-36.pdf
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-387-94342-0
http://www.computerhistory.org/semiconductor/timeline/1964-Commecial.html
http://www.google.com/patents/about?id=6w4wAAAAEBAJ
https://en.wikipedia.org/wiki/Robert_H._Cushman
http://www.swtpc.com/mholley/Microprocessors/EDN_Sep_20_1975_6502.pdf
http://www.swtpc.com/mholley/Microprocessors/EDN_Sep_20_1975_6502.pdf
http://www.swtpc.com/mholley/Microprocessors/EDN_Sep_20_1975_6502.pdf
http://www.google.com/patents?id=2pk6AAAAEBAJ
http://www.google.com/patents/about?id=6OkAAAAAEBAJ

5.13. REFERENCES 33

[18] Idleman, Thomas E.; Jenkins, Francis S.; McCalla,
William .J.; Pederson, Donald. O (August 1971). “SLIC
- A Simulator for Linear Integrated Circuits”. Solid-State
Circuits, IEEE Journal of (IEEE) 6 (4): pp. 188–203.
doi:10.1109/jssc.1971.1050168. ISSN 0018-9200.

[19] Jenkins, Francis; Lane, E.; Lattin, W.; Richardson, W.
(November 1973). “MOS-device modeling for computer
implementation”. Circuit Theory, IEEE Transactions on
(IEEE) 20 (6): 649–658. doi:10.1109/tct.1973.1083758.
ISSN 0018-9324. All of the authors were with Motorola’s
Semiconductor Products Division.

[20] Hoefler, Don (November 1, 1975). “Outer”. Microelec-
tronics News (Santa Clara, CA): p. 2. Bill Lattin leaves
Motorola to join Intel.

[21] Mensch, William D., “Chip topography for MOS inter-
face circuit”, US Patent 3968478, issued July 6, 1976.

[22] Bill Memsch’s is listed as an inventor on the following
M6800 patents : 3979730, 4020472, 4086627, 4087855,
4145751, 4218740, 4263650

[23] Michael F. Wiles is listed as an inventor on the follow-
ing US Patents on the Motorola 6800 system: 3979730,
4003028, 4004281, 4004283, 4010448, 4016546,
4020472, 4030079, 4032896, 4037204, 4040035,
4069510, 4086627, 4087855, 4090236, 4145751,
4218740, 4263650

[24] Wiles, Mike; Andre Felix (1974). Engineering Note
100: MCM6830L7 MIKBUG/MINIBUG ROM. Phoenix
Arizona: Motorola Semiconductor Products.

[25] “SWTPC 6800: The Computer System You Have Been
Waiting For”. Byte (PeterboroughMH: Green Publishing)
1 (3): Cover 2. November 1975. First advertisement for
the SWTPC 6800 computer.

[26] Daniels, R. Gary (December 1996). “A Participant’s Per-
spective”. IEEE Micro (IEEE Computer Society) 16 (5):
pp. 21–31. doi:10.1109/40.546562. Daniels, “My first
assignment was to lead a small team to redesign the 6800
MPU to make it more manufacturable and so that higher
speed versions could be selected.”

[27] Bagnall, Brian (2006). On the Edge: The Spectacular Rise
And Fall of Commodore. Winnipeg, Manitoba: Variant
Press. pp. 9–12. ISBN 0-9738649-0-7. Chapters 1 and 2
cover Chuck Peddle’s early life, his time at Motorola and
the genesis of the 6501/6502 microprocessors.

[28] Charles Peddle is listed as an inventor on the follow-
ing US Patents on the Motorola 6800 system: 3975712,
3979730, 4004283, 4006457, 4016546, 4020472,
4030079, 4032896, 4037204, 4040035, 4086627,
4087855, 4090236, 4145751, 4218740, 4263650. Most
of these patents have six or more co-inventors.

[29] “Motorola 6800 prototype board”. Computer History
Museum. Retrieved July 5, 2010. Gift from Thomas
H. Bennett, designer of the 6800 microprocessor. This
6800 prototype board was constructed by Chuck Peddle
and John Buchanan.

[30] “Microprocessors: Designers gain new freedom as options
multiply”. Electronics (New York: McGraw-Hill) 49 (8):
pp. 78–100. April 15, 1976. This was Electronics maga-
zine annual microprocessor special edition

[31] Motorola 6800 Oral History (2008) pp. 15-16

[32] Clements, Alan (1982). Microcomputer Design and Con-
struction. Prentice-Hall. pp. 70, 49. ISBN 0-13-580738-
7.

[33] “How to drive a microprocessor”. Electronics (New York:
McGraw-Hill) 49 (8): p. 159. April 15, 1976. Motorola’s
Component Products Department sold hybrid ICs that in-
cluded a quartz oscillator. These ICs produced the two-
phase non-overlapping waveforms that the 6800 and 8080
required. Later, Intel produced the 8224 clock generator
and Motorola produced the MC6875. The Intel 8085 and
the Motorola 6802 processors included this circuitry on
chip.

[34] “Intel’s Higher Speed 8080 μP”. Microcomputer Digest
(Cupertino CA: Microcomputer Associates) 2 (3): p. 7.
September 1975.

[35] Verhofstadt, Peter (June 1976). “Evaluation of tech-
nology options for LSI processing elements”. Pro-
ceedings of the IEEE (IEEE) 64 (6): pp. 842–851.
doi:10.1109/PROC.1976.10234.

[36] Motorola 6800 Oral History (2008), p. 27

[37] Masatoshi, Shima; Federico Faggin; Stanley Mazor
(February 1974). “An N-Channel 8-Bit Single Chip Mi-
croprocessor”. “Solid-State Circuits Conference. Di-
gest of Technical Papers. 1974 IEEE International”.
IEEE Computer Society Press. pp. 56, 57, 229.
doi:10.1109/ISSCC.1974.1155265. Table 2 on page 229
gives the 8080 chip size as 164 x 191 mils. The 8008 was
124 x 173 mils

[38] Wikes, W. E. (January 1977). “A Microprocessor Chip
Designed with the User in Mind”. Computer (IEEE) 10
(1): pp. 18–22. doi:10.1109/C-M.1977.217492. This
paper describes the Electronic Arrays EA9002 micropro-
cessor that was 200 by 200 mils and fabricated on a 3 inch
silicon wafer.

[39] Elmasry, Mohamed I., ed. (1981). Digital MOS integrated
circuits. IEEEPress. ISBN 978-0-87942-152-6. A 3-inch
wafer can hold 200 dies of 160 by 160 mils. Total yield is
Wafer yield x Assembly yield x Final test yield. In 1976
this was 40% x 80% x 85% or 26%. A 3 inch wafer with
200 die would yield 54 working microprocessors.

[40] “Electronics Newsletter: 6800 gains speed, lower prices
by summer”. Electronics (New York: McGraw-Hill) 49
(5): p. 25. March 4, 1976.

[41] Young, Link; Tom Bennett; Jeff LaVell (April 18, 1974).
“N-channel MOS technology yields new generation of mi-
croprocessors”. Electronics (NewYork: McGraw-Hill) 47
(8): pp. 88–95.

[42] Shima, Masatoshi; Federico Faggin (April 18, 1974). “In
switch to n-MOS microprocessor gets a 2-μs cycle time”.
Electronics (New York: McGraw-Hill) 47 (8): pp. 95–
100.

https://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1109%2Fjssc.1971.1050168
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
https://www.worldcat.org/issn/0018-9200
https://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1109%2Ftct.1973.1083758
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
https://www.worldcat.org/issn/0018-9324
http://smithsonianchips.si.edu/schreiner/1975/h75n12.htm
http://www.google.com/patents/about?id=NTk4AAAAEBAJ
http://commons.wikimedia.org/wiki/File:SWTPC_6800_Computer_Nov_1975.jpg
http://commons.wikimedia.org/wiki/File:SWTPC_6800_Computer_Nov_1975.jpg
https://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1109%2F40.546562
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-9738649-0-7
http://www.computerhistory.org/collections/accession/102711296
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-13-580738-7
https://en.wikipedia.org/wiki/Special:BookSources/0-13-580738-7
http://commons.wikimedia.org/wiki/File:Motorola_MC6870_ad_April_1976.jpg
http://www.bitsavers.org/pdf/microcomputerAssociates/Microcomputer_Digest_v02n03_Sep75.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1109%2FPROC.1976.10234
https://en.wikipedia.org/wiki/Masatoshi_Shima
https://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1109%2FISSCC.1974.1155265
https://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1109%2FC-M.1977.217492
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-87942-152-6

34 CHAPTER 5. MOTOROLA 6800

[43] House, Dave (April 26, 2007). “Oral History Panel on
the Development and Promotion of the Intel 8080 Mi-
croprocessor”. Mountain View, CA: Computer History
Museum.

[44] Motorola 6800 Oral History (2008) pp. 9, 15

[45] “HP designs custom 16-bit uC chip”. Microcomputer Di-
gest (Cupertino CA: Microcomputer Associates) 2 (4): p.
8. October 1975. “The instrument is a companion to
the firm’s new 9815A calculator which uses a Motorola
M6800 microcomputer and is priced at $2900.”

[46] “Motorola microprocessor set is 1 MHz n-MOS”. Control
Engineering 21 (11): p. 11. November 1974. MC6800
microprocessor price was $360. The MC6850 asyn-
chronous communications interface adaptor (ACIA) was
slated for first quarter 1975 introduction.

[47] Intel Corporation; Glynnis Thompson Kaye (Editor)
(1984). A Revolution in Progress - A History to Date of
Intel. Intel Corporation. p. 14. Order number:231295.
“Shima implemented the 8080 in about a year and the new
device was introduced in April 1974 for $360.”

[48] “Motorola mounts M6800 drive”. Electronics (New York:
McGraw-Hill) 48 (8): p. 25. April 17, 1975. “Distribu-
tors are being stocked with the M6800 family, and the di-
vision is also offering an introductory kit that includes the
family’s six initial parts, plus applications and program-
ming manuals, for $300.”

[49] M6800 Microprocessor Programming Manual. Phoenix
AZ: Motorola Semiconductor Products. 1975. This book
was the instruction manual for the development software.
Some of the software listing examples have dates from
1973 and 1974.

[50] “It’s Easy and Inexpensive.”. Electronics (New York:
McGraw-Hill) 49 (8): p. 27. April 15, 1976. The three-
day design course cost $375 and included a copy of all the
training materials. A company could schedule a course
for 20 engineers at their own facility for $4000.

[51] Noyce, Robert N.; Marcian E. Hoff, Jr. (February 1981).
“A History of Microprocessor Development at Intel”.
IEEE MICRO (IEEE Computer Society Press) 1 (1): pp.
8–21. doi:10.1109/MM.1981.290812. “Motorola also
introduced a development system and four peripheral
chips mated to the 6800. Motorola’s systems-oriented ap-
proach influenced the industry; henceforth CPUs would
be introduced with full support available rather than on a
trailing schedule.”

[52] “Semiconductor makers delay expansion”. Electronics
(New York: McGraw-Hill) 47 (23): pp. 82–85. Novem-
ber 14, 1974. Motorola’s Austin MOS plant already in
operation. “However, engineering and marketing won't
move until 1975.”

[53] Hoefler, Don (July 3, 1976). “Backfire”. Microelectronics
News (Santa Clara, CA): p. 3.

[54] “Semiconductor makers continue to trim employment”.
Electronics (New York: McGraw-Hill) 47 (24): p. 46.
November 28, 1974.

[55] Waller, Larry (November 13, 1975). “Motorola seeks
to end skid”. Electronics (New York: McGraw-Hill) 48
(23): pp. 96–98. Summary: Semiconductor Products
split into two parts, integrated circuits and discrete com-
ponents. Semiconductor losses for the last four quarters
exceeded $30 million. The sales organization lost its sen-
sitivity to customer needs, “delays in responding to price
cuts meant that customers bought elsewhere.” Technical
problems plagued IC production. The troubles are “not in
design, but in chip and die yields.” Problems have been
solved. The MC6800 microprocessor “arrived in Novem-
ber 1974.”

[56] Tedlow, Richard S. (2007). Andy Grove: The Life and
Times of an American Business Icon. New York: Portfo-
lio. p. 158. ISBN 1-59184-182-8. “By the end of the
year [1974], Intel had fired fully 30 percent of its thirty-
five hundred employees.”

[57] “It’s the total product family”. Electronics (New York:
McGraw-Hill) 48 (1): p. 37. January 9, 1975. Motorola
advertisement emphasizing their complete set of periph-
eral chips and development tools. This shorten the cus-
tomers product design cycle.

[58] Motorola 6800 Oral History (2008) p. 18

[59] Bagnall (2006), “On the Edge”. Page 10, “While still em-
ployed at Motorola, Peddle tried raising money to fund his
new microprocessor.

[60] Fylstra, Daniel (November 1975). “Son of Motorola (or
the $20 CPUChip) extquotedbl. Byte (Peterborough, NH:
Green Publishing) 1 (3): pp. 56–62. Comparison of the
6502 and the 6800 microprocessors. Author visited MOS
Technology in August 1975.

[61] “Microprocessor line offers 4, 8,16 bits”. Electronics
(New York: McGraw-Hill) 48 (15): p. 118. July 24,
1975. The article covers the 6501 and 6502 plus the 28
pin versions that would only address 4K of memory. It
also covered future devices such as “a design that Peddle
calls a pseudo 16.”

[62] Sugarman, Robert (25 August 1975). “Does the Coun-
try Need A Good $20 Microprocessor? extquotedbl. EE
Times (Manhasset, New York: CMP Publications): p. 25.

[63] “MOS 6501 Microprocessor beats 'em all”. Electronics
(New York: McGraw-Hill) 48 (16): pp. 60–61. August
7, 1975.

[64] “MOS 6502 the second of a low cost high performance
microprocessor family”. Computer (IEEE Computer So-
ciety) 8 (9): pp 38–39. September 1975. doi:10.1109/C-
M.1975.219074.

[65] Motorola (October 30, 1975). “All this and unbundled
$69 microprocessor”. Electronics (McGraw-Hill) 48 (22):
p. 11. The quantity one price for the MC6800 was re-
duced from $175 to $69. The previous price for 50 to 99
units was $125.

[66] “Motorola Sues MOS Technology”. Microcomputer Di-
gest (Cupertino CA: Microcomputer Associates) 2 (6): p.
11. December 1975.

http://www.computerhistory.org/collections/accession/102658123
http://www.computerhistory.org/collections/accession/102658123
http://www.computerhistory.org/collections/accession/102658123
http://www.bitsavers.org/pdf/microcomputerAssociates/Microcomputer_Digest_v02n04_Oct75.pdf
http://www.intel.com/museum/archives/brochures/brochures.htm
http://www.intel.com/museum/archives/brochures/brochures.htm
http://commons.wikimedia.org/wiki/File:Motorola_M6800_Training_ad_April_1976.jpg
https://en.wikipedia.org/wiki/Robert_Noyce
https://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1109%2FMM.1981.290812
http://smithsonianchips.si.edu/schreiner/1976/h76713.htm
http://books.google.com/books?id=zQamXENAalkC&pg=PA158
http://books.google.com/books?id=zQamXENAalkC&pg=PA158
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1-59184-182-8
http://commons.wikimedia.org/wiki/File:Motorola_6800_Total_Product_Family_1975.jpg
https://en.wikipedia.org/wiki/Dan_Fylstra
http://www.commodore.ca/gallery/magazines/misc/mos_605x_team_eetimes_august_1975.pdf
http://www.commodore.ca/gallery/magazines/misc/mos_605x_team_eetimes_august_1975.pdf
http://commons.wikimedia.org/wiki/File:MOS_6501_6502_Ad_Sept_1975.jpg
http://commons.wikimedia.org/wiki/File:MOS_6501_6502_Ad_Sept_1975.jpg
https://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1109%2FC-M.1975.219074
http://dx.doi.org/10.1109%2FC-M.1975.219074
http://commons.wikimedia.org/wiki/File:Motorola_MC6800_microprocessor_ad_1975.jpg
http://commons.wikimedia.org/wiki/File:Motorola_MC6800_microprocessor_ad_1975.jpg
http://www.bitsavers.org/pdf/microcomputerAssociates/Microcomputer_Digest_v02n06_Dec75.pdf

5.14. EXTERNAL LINKS 35

[67] “MOS Technology Drops 6501”. Microcomputer Digest
(Cupertino CA: Microcomputer Associates) 2 (11): p. 4.
May 1976.

[68] Teener, Mike (May 1976). “Politics and Intrigue”. SCCS
Interface (Los Angeles: Southern California Computer
Society) 1 (6): p. 58. extquotedblSo Motorola sued and
just recently won an out-of-court settlement that hasMOS
Technology paying $200,000 and stopping production on
the 6501.”

[69] “New 6800 Pricing”. SCCS Interface (Los Angeles:
Southern California Computer Society) 1 (6): p. 63. May
1976. The new prices for the Motorola 6800 were $35 for
1–9 units, $32.50 for 10–49 and $29.25 for 50–99.

[70] Motorola was awarded the following US Patents on
the 6800 microprocessor family: 3962682, 3968478,
3975712, 3979730, 3979732, 3987418, 4003028,
4004281, 4004283, 4006457, 4010448, 4016546,
4020472, 4030079, 4032896, 4037204, 4040035,
4069510, 4071887, 4086627, 4087855, 4090236,
4145751, 4218740, 4263650

[71] Shima, Masatoshi; Federico Faggin; Ralph Ungermann
(August 19, 1976). “Z-80 chip set heralds third micro-
processor generation”. Electronics (New York: McGraw-
Hill) 49 (17): pp. 89–93.

[72] Slater, Michael (April 27, 2007). “Zilog Oral History
Panel on the Founding of the Company and the Develop-
ment of the Z80 Microprocessor”. Mountain View, CA:
Computer History Museum.

[73] Michalopoulos, D.A. (July 1976). “New Products: Zilog
microcomputer”. Computer (IEEE Computer Society) 9
(7): p. 69. doi:10.1109/C-M.1976.218651.

[74] Advanced Information: 1.5 and 2.0 MHz Components for
the M6800 Microcomputer System. Austin, Texas: Mo-
torola Semiconductor Products. April 1977. pp. 4–6.
ADI-429. The MC6820 became the MC6821 because
the electrical characteristic of PA0–7 and PB0–7 pins
changed slightly. The typical Input High Current went
from −250 μAdc to −400 μAdc and the Input Low Cur-
rent went from 1.0 mAdc to 1.3 mAdc.

[75] “New Clock Chip for 6800 Systems”. Byte (Peterborough
NH: Byte Publications) 2 (12): p. 210. December 1977.
Requiring only a 5 V supply and a quartz crystal or an
RC network, theMC6875 provides buffered 2 phase clock
outputs… $3.75 in 1000 piece quantities from Motorola
Linear Products

[76] “Texas Instruments and Motorola pare down micropro-
cessors for low end market”. Electronic (McGraw-Hill)
50 (5): pp. 34, 36. March 3, 1977. MC6802 micro-
processor has oscillator and 128 byte RAM. MC6846 has
ROM Timer and I/O. Samples later this month.

[77] Product PreviewMC6801. Austin, Texas: Motorola Semi-
conductor Products. August 1978. NP-93..

[78] Motorola 6800 Oral History (2008) pp. 21-22

[79] Product PreviewMC6809. Austin, Texas: Motorola Semi-
conductor Products. December 1978. NP-98 R1..

[80] H. Edward Roberts; William Yates (January 1975). “Al-
tair 8800minicomputer”. Popular Electronics (ZiffDavis)
7 (1): pp. 33–38.

[81] “Computer System $650”. Radio-Electronics (New York:
Gernsback Publications) 42 (7): p.88. July 1975.

[82] Anderson, Bruce (July 1976). “Assembling a Sphere”.
Byte (Peterborough NH: Byte Publications) 1 (11): pp.
18–20.

[83] Pollini, Steve (April 1976). “680-b ready for production”.
Computer Notes (MITS) 1 (11): p. 8. “MITS is now ready
to begin full production of the Altair 680b”

[84] Norell, Melvin (May 31, 1977). “Dear SphereMicrocom-
puter User”. Programma News Letter (Los Angeles: Pro-
gramma Consultants): pp. 1–3.

[85] Ahl, David; Green, Burchenal (1980). The Best of Cre-
ative Computing Volume 3. Morristown, NJ: Creative
Computing Press. pp. 106–108. ISBN 0-916688-12-7.
Interview with Daniel Meyer at the “Personal Computing
77” conference at Atlantic City NJ in August 1977

[86] “SWTPC announces first dual minifloppy kit under
$1,000”. Byte (Peterborough NH: Green Publishing) 2
(10): Cover 2. October 1977.

[87] Wallace, Bob (December 1977). “Bob’s Bits: Personal
Computers in 1976”. Northwest Computer Club News
(Renton WA) 2 (12): p. 9.

[88] “Terminal Talks Basic”. Electronics (New York:
McGraw-Hill) 42 (22): p. 120. October 30, 1975. Ad
for Tektronix 4051 in Electronics April 1976

[89] “Heathkit Microprocessor Course”. Popular Science
(New York: Times Mirror Magazines) 211 (5): p. 133.
November 1977. ISSN 0161-7370.

5.14 External links
• MC6800 applications manual from 1975- lots of in-
formation

• MDOS User’s Manual

• Motorola Exorciser Emulator for Windows

• Open source Motorola Exorciser and SWTPC em-
ulator for Linux/Cygwin

• MIKBUG

• 680x images and descriptions at cpu-collection.de

• Instruction set summary

• Java Applet Simulator of a simplified M6800 Mi-
croprocessor

http://www.bitsavers.org/pdf/microcomputerAssociates/Microcomputer_Digest_v02n11_May76.pdf
http://www.computerhistory.org/collections/accession/102658073
http://www.computerhistory.org/collections/accession/102658073
http://www.computerhistory.org/collections/accession/102658073
https://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1109%2FC-M.1976.218651
http://startup.nmnaturalhistory.org/gallery/notesViewer.php?ii=76_4&p=8
http://www.bitsavers.org/pdf/sphere/newsletter/Programma_Jun77.pdf
http://www.bitsavers.org/pdf/sphere/newsletter/Programma_Jun77.pdf
http://www.atariarchives.org/bcc3/showpage.php?page=106
http://www.atariarchives.org/bcc3/showpage.php?page=106
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-916688-12-7
http://commons.wikimedia.org/wiki/File:SWTPC_6800_Computer_Oct_1977.jpg
http://commons.wikimedia.org/wiki/File:SWTPC_6800_Computer_Oct_1977.jpg
https://en.wikipedia.org/wiki/Bob_Wallace
http://commons.wikimedia.org/wiki/File:Northwest_Computer_Club_Dec_1977_pg09.jpg
http://commons.wikimedia.org/wiki/File:Northwest_Computer_Club_Dec_1977_pg09.jpg
https://en.wikipedia.org/wiki/File:Tektronix_4051_ad_April_1976.jpg
https://en.wikipedia.org/wiki/File:Tektronix_4051_ad_April_1976.jpg
http://books.google.com/books?id=bwEAAAAAMBAJ&pg=PA133
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
https://www.worldcat.org/issn/0161-7370
http://www.wickensonline.co.uk/hx-20/M6800applMan_Mar75.pdf
http://www.wickensonline.co.uk/hx-20/M6800applMan_Mar75.pdf
http://www.bitsavers.org/pdf/motorola/6800/M68MDOS3_MDOS3um_Jun79.pdf
http://www.exorciser.net/excorindex_en.htm
http://exorsim.sourceforge.net/
http://exorsim.sourceforge.net/
http://www.swtpc.com/mholley/MP_A/MIKBUG_Index.htm
http://www.cpu-collection.de/?tn=1&l0=cl&l1=680x
http://www.textfiles.com/programming/CARDS/6800
http://www.ccso.co.uk/djc725/java_project
http://www.ccso.co.uk/djc725/java_project

Chapter 6

PIC microcontroller

PIC microcontrollers in DIP and QFN packages

16-bit 28-pin PDIP PIC24 microcontroller next to a metric ruler

PIC is a family of modified Harvard architecture
microcontrollers made by Microchip Technology, de-
rived from the PIC1650[1][2][3] originally developed by
General Instrument's Microelectronics Division. The
name PIC initially referred to extquotedblPeripheral In-
terface Controller extquotedbl now it is extquotedblPIC
extquotedbl only.[4][5]

PICs are popular with both industrial developers and hob-
byists alike due to their low cost, wide availability, large
user base, extensive collection of application notes, avail-
ability of low cost or free development tools, and serial
programming (and re-programming with flash memory)
capability.

Die of a PIC12C508 8-bit, fully static, EEPROM/EPROM/ROM-
based CMOS microcontroller manufactured by Microchip Tech-
nology using a 1200 nanometre process.

Die of a PIC16C505 CMOS ROM-based 8-bit microcontroller
manufactured by Microchip Technology using a 1200 nanometre
process.

36

https://en.wikipedia.org/wiki/Dual_in-line_package
https://en.wikipedia.org/wiki/QFN
https://en.wikipedia.org/wiki/Modified_Harvard_architecture
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Microchip_Technology
https://en.wikipedia.org/wiki/General_Instrument
https://en.wikipedia.org/wiki/Die_(integrated_circuit)
https://en.wikipedia.org/wiki/EEPROM
https://en.wikipedia.org/wiki/EPROM
https://en.wikipedia.org/wiki/Mask_ROM
https://en.wikipedia.org/wiki/CMOS
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Microchip_Technology
https://en.wikipedia.org/wiki/Microchip_Technology
https://en.wikipedia.org/wiki/Nanometre
https://en.wikipedia.org/wiki/Die_(integrated_circuit)
https://en.wikipedia.org/wiki/CMOS
https://en.wikipedia.org/wiki/Read-only_memory
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Microchip_Technology
https://en.wikipedia.org/wiki/Nanometre

6.2. CORE ARCHITECTURE 37

Various older (EPROM) PIC microcontrollers

6.1 History

The original PIC was built to be used with General In-
strument’s new CP1600 16-bit CPU. While generally a
good CPU, the CP1600 had poor I/O performance, and
the 8-bit PIC was developed in 1975 to improve perfor-
mance of the overall system by offloading I/O tasks from
the CPU. The PIC used simple microcode stored in ROM
to perform its tasks, and although the term was not used
at the time, it shares some common features with RISC
designs.
In 1985, General Instrument spun off their
microelectronics division and the new ownership
cancelled almost everything — which by this time was
mostly out-of-date. The PIC, however, was upgraded
with an internal EPROM to produce a programmable
channel controller. Today a huge variety of PICs are
available with various on-board peripherals (serial
communication modules, UARTs, motor control kernels,
etc.) and program memory from 256 words to 64k
words and more (a “word” is one assembly language
instruction, varying from 8, 12, 14 or 16 bits depending
on the specific PIC micro family).
PIC and PICmicro are registered trademarks of
Microchip Technology. It is generally thought that
PIC stands for Peripheral Interface Controller,
although General Instruments’ original acronym
for the initial PIC1640 and PIC1650 devices was
extquotedblProgrammable Interface Controller
extquotedbl.[4] The acronym was quickly replaced with
extquotedblProgrammable Intelligent Computer
extquotedbl.[5]

The Microchip 16C84 (PIC16x84), introduced in 1993,
was the first Microchip CPU with on-chip EEPROM
memory. This electrically erasable memory made it cost
less than CPUs that required a quartz “erase window” for
erasing EPROM.
By 2013, Microchip was shipping over one billion PIC
microcontrollers every year.[6]

6.2 Core architecture

The PIC architecture is characterized by its multiple at-
tributes:

• Separate code and data spaces (Harvard architec-
ture).

• A small number of fixed length instructions

• Most instructions are single cycle execution (2 clock
cycles, or 4 clock cycles in 8-bit models), with one
delay cycle on branches and skips

• One accumulator (W0), the use of which (as source
operand) is implied (i.e. is not encoded in the
opcode)

• All RAM locations function as registers as both
source and/or destination of math and other
functions.[7]

• A hardware stack for storing return addresses

• A small amount of addressable data space (32, 128,
or 256 bytes, depending on the family), extended
through banking

• Data space mapped CPU, port, and peripheral reg-
isters

• ALU status flags are mapped into the data space

• The program counter is also mapped into the data
space and writable (this is used to implement indi-
rect jumps).

There is no distinction between memory space and regis-
ter space because the RAM serves the job of both mem-
ory and registers, and the RAM is usually just referred to
as the register file or simply as the registers.

6.2.1 Data space (RAM)

PICs have a set of registers that function as general pur-
pose RAM. Special purpose control registers for on-chip
hardware resources are also mapped into the data space.
The addressability of memory varies depending on device
series, and all PIC devices have some bankingmechanism
to extend addressing to additional memory. Later se-
ries of devices feature move instructions which can cover
the whole addressable space, independent of the selected
bank. In earlier devices, any register move had to be
achieved via the accumulator.
To implement indirect addressing, a “file select register”
(FSR) and “indirect register” (INDF) are used. A regis-
ter number is written to the FSR, after which reads from
or writes to INDF will actually be to or from the register
pointed to by FSR. Later devices extended this concept

https://en.wikipedia.org/wiki/General_Instrument_CP1600
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/CPU
https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Microcode
https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
https://en.wikipedia.org/wiki/Microelectronics
https://en.wikipedia.org/wiki/EPROM
https://en.wikipedia.org/wiki/Channel_controller
https://en.wikipedia.org/wiki/Serial_communications
https://en.wikipedia.org/wiki/Serial_communications
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Micro_programming_language
https://en.wikipedia.org/wiki/PIC16x84
https://en.wikipedia.org/wiki/Harvard_architecture
https://en.wikipedia.org/wiki/Harvard_architecture
https://en.wikipedia.org/wiki/Accumulator_(computing)
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Bank_switching

38 CHAPTER 6. PIC MICROCONTROLLER

with post- and pre- increment/decrement for greater ef-
ficiency in accessing sequentially stored data. This also
allows FSR to be treated almost like a stack pointer (SP).
External data memory is not directly addressable except
in some high pin count PIC18 devices.

6.2.2 Code space

The code space is generally implemented as ROM,
EPROMor flash ROM. In general, external codememory
is not directly addressable due to the lack of an external
memory interface. The exceptions are PIC17 and select
high pin count PIC18 devices.[8]

6.2.3 Word size

All PICs handle (and address) data in 8-bit chunks. How-
ever, the unit of addressability of the code space is not
generally the same as the data space. For example, PICs
in the baseline (PIC12) and mid-range (PIC16) families
have program memory addressable in the same wordsize
as the instruction width, i.e. 12 or 14 bits respectively.
In contrast, in the PIC18 series, the program memory is
addressed in 8-bit increments (bytes), which differs from
the instruction width of 16 bits.
In order to be clear, the programmemory capacity is usu-
ally stated in number of (single word) instructions, rather
than in bytes.

6.2.4 Stacks

PICs have a hardware call stack, which is used to save
return addresses. The hardware stack is not software ac-
cessible on earlier devices, but this changed with the 18
series devices.
Hardware support for a general purpose parameter stack
was lacking in early series, but this greatly improved in the
18 series, making the 18 series architecture more friendly
to high level language compilers.

6.2.5 Instruction set

A PIC’s instructions vary from about 35 instructions for
the low-end PICs to over 80 instructions for the high-
end PICs. The instruction set includes instructions to
perform a variety of operations on registers directly, the
accumulator and a literal constant or the accumulator and
a register, as well as for conditional execution, and pro-
gram branching.
Some operations, such as bit setting and testing, can
be performed on any numbered register, but bi-operand
arithmetic operations always involve W (the accumula-
tor), writing the result back to either W or the other

operand register. To load a constant, it is necessary to
load it into W before it can be moved into another regis-
ter. On the older cores, all register moves needed to pass
through W, but this changed on the “high end” cores.
PIC cores have skip instructions which are used for con-
ditional execution and branching. The skip instructions
are 'skip if bit set' and 'skip if bit not set'. Because cores
before PIC18 had only unconditional branch instructions,
conditional jumps are implemented by a conditional skip
(with the opposite condition) followed by an uncondi-
tional branch. Skips are also of utility for conditional ex-
ecution of any immediate single following instruction. It
is possible to skip skip instructions. For example, the in-
struction sequence “skip if A; skip if B; C” will execute
C if A is true or if B is false.
The 18 series implemented shadow registers which save
several important registers during an interrupt, providing
hardware support for automatically saving processor state
when servicing interrupts.
In general, PIC instructions fall into 5 classes:

1. Operation on working register (WREG) with 8-bit
immediate (“literal”) operand. E.g. movlw (move
literal toWREG), andlw (AND literal withWREG).
One instruction peculiar to the PIC is retlw, load im-
mediate into WREG and return, which is used with
computed branches to produce lookup tables.

2. Operation with WREG and indexed register. The
result can be written to either the Working register
(e.g. addwf reg,w). or the selected register (e.g. ad-
dwf reg,f).

3. Bit operations. These take a register number and
a bit number, and perform one of 4 actions: set or
clear a bit, and test and skip on set/clear. The latter
are used to perform conditional branches. The usual
ALU status flags are available in a numbered regis-
ter so operations such as “branch on carry clear” are
possible.

4. Control transfers. Other than the skip instructions
previously mentioned, there are only two: goto and
call.

5. A few miscellaneous zero-operand instructions,
such as return from subroutine, and sleep to enter
low-power mode.

6.2.6 Performance

The architectural decisions are directed at the max-
imization of speed-to-cost ratio. The PIC architec-
ture was among the first scalar CPU designs, and is
still among the simplest and cheapest. The Harvard
architecture—in which instructions and data come from

https://en.wikipedia.org/wiki/Read-only_memory
https://en.wikipedia.org/wiki/EPROM
https://en.wikipedia.org/wiki/Flash_memory
https://en.wikipedia.org/wiki/Call_stack
https://en.wikipedia.org/wiki/Accumulator_(computing)
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Branch_(computer_science)
https://en.wikipedia.org/wiki/Lookup_table

6.3. FAMILY CORE ARCHITECTURAL DIFFERENCES 39

separate sources—simplifies timing and microcircuit de-
sign greatly, and this benefits clock speed, price, and
power consumption.
The PIC instruction set is suited to implementation of fast
lookup tables in the program space. Such lookups take
one instruction and two instruction cycles. Many func-
tions can be modeled in this way. Optimization is facil-
itated by the relatively large program space of the PIC
(e.g. 4096 × 14-bit words on the 16F690) and by the
design of the instruction set, which allows for embedded
constants. For example, a branch instruction’s target may
be indexed by W, and execute a “RETLW” which does
as it is named - return with literal in W.
Interrupt latency is constant at three instruction cycles.
External interrupts have to be synchronized with the four
clock instruction cycle, otherwise there can be a one in-
struction cycle jitter. Internal interrupts are already syn-
chronized. The constant interrupt latency allows PICs to
achieve interrupt driven low jitter timing sequences. An
example of this is a video sync pulse generator. This is no
longer true in the newest PIC models, because they have
a synchronous interrupt latency of three or four cycles.

6.2.7 Advantages

• Small instruction set to learn

• RISC architecture

• Built in oscillator with selectable speeds

• Easy entry level, in-circuit programming plus in-
circuit debugging PICKit units available for less than
$50

• Inexpensive microcontrollers

• Wide range of interfaces including I²C, SPI, USB,
USART, A/D, programmable comparators, PWM,
LIN, CAN, PSP, and Ethernet[9]

• Availability of processors in DIL package make
them easy to handle for hobby use.

6.2.8 Limitations

• One accumulator

• Register-bank switching is required to access the en-
tire RAM of many devices

• Operations and registers are not orthogonal; some
instructions can address RAM and/or immediate
constants, while others can use the accumulator
only.

The following stack limitations have been addressed in
the PIC18 series, but still apply to earlier cores:

• The hardware call stack is not addressable, so pre-
emptive task switching cannot be implemented

• Software-implemented stacks are not efficient, so it
is difficult to generate reentrant code and support
local variables

With paged program memory, there are two page sizes
to worry about: one for CALL and GOTO and another
for computed GOTO (typically used for table lookups).
For example, on PIC16, CALL and GOTO have 11 bits
of addressing, so the page size is 2048 instruction words.
For computed GOTOs, where you add to PCL, the page
size is 256 instruction words. In both cases, the upper
address bits are provided by the PCLATH register. This
register must be changed every time control transfers be-
tween pages. PCLATH must also be preserved by any
interrupt handler.[10]

6.2.9 Compiler development

While several commercial compilers are available, in
2008, Microchip released their own C compilers, C18
and C30, for the line of 18F 24F and 30/33F processors.
As of 2013, Microchip offers their XC series of com-
pilers, for use with MPLAB X. Microchip will even-
tually phase out its older compilers such as C18, and
recommends using their XC series compilers for new
designs.[11]

The easy to learn RISC instruction set of the PIC as-
sembly language code can make the overall flow difficult
to comprehend. Judicious use of simple macros can in-
crease the readability of PIC assembly language. For ex-
ample, the original Parallax PIC assembler (“SPASM”)
has macros which hide W and make the PIC look like
a two-address machine. It has macro instructions like
“mov b, a” (move the data from address a to address b)
and “add b, a” (add data from address a to data in ad-
dress b). It also hides the skip instructions by providing
three operand branch macro instructions such as “cjne a,
b, dest” (compare a with b and jump to dest if they are
not equal).

6.3 Family core architectural dif-
ferences

PICmicro chips have a Harvard architecture, and in-
struction words are unusual sizes. Originally, 12-bit in-
structions included 5 address bits to specify the memory
operand, and 9-bit branch destinations. Later revisions
added opcode bits, allowing additional address bits.

https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
https://en.wikipedia.org/wiki/PICKit
https://en.wikipedia.org/wiki/I²C
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://en.wikipedia.org/wiki/USB
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter
https://en.wikipedia.org/wiki/Analog-to-digital_converter
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Local_Interconnect_Network
https://en.wikipedia.org/wiki/Controller_area_network
https://en.wikipedia.org/wiki/Parallel_slave_port
https://en.wikipedia.org/wiki/Dual_in-line_package
https://en.wikipedia.org/wiki/Accumulator_(computing)
https://en.wikipedia.org/wiki/Bank_switching
https://en.wikipedia.org/wiki/Orthogonal#Computer_science
https://en.wikipedia.org/wiki/Constant_(computer_science)
https://en.wikipedia.org/wiki/Computer_multitasking
https://en.wikipedia.org/wiki/Stack_(data_structure)
https://en.wikipedia.org/wiki/Reentrant_(subroutine)
https://en.wikipedia.org/wiki/Local_variable
https://en.wikipedia.org/wiki/MPLAB
https://en.wikipedia.org/wiki/Macro_(computer_science)
https://en.wikipedia.org/wiki/Parallax,_Inc._(company)

40 CHAPTER 6. PIC MICROCONTROLLER

6.3.1 Baseline core devices (12 bit)

These devices feature a 12-bit wide code memory, a 32-
byte register file, and a tiny two level deep call stack. They
are represented by the PIC10 series, as well as by some
PIC12 and PIC16 devices. Baseline devices are available
in 6-pin to 40-pin packages.
Generally the first 7 to 9 bytes of the register file are
special-purpose registers, and the remaining bytes are
general purpose RAM. Pointers are implemented using
a register pair: after writing an address to the FSR (file
select register), the INDF (indirect f) register becomes an
alias for the addressed register. If banked RAM is imple-
mented, the bank number is selected by the high 3 bits of
the FSR. This affects register numbers 16–31; registers
0–15 are global and not affected by the bank select bits.
Because of the very limited register space (5 bits), 4 rarely
read registers were not assigned addresses, but written by
special instructions (OPTION and TRIS).
The ROM address space is 512 words (12 bits each),
which may be extended to 2048 words by banking.
CALL and GOTO instructions specify the low 9 bits of
the new code location; additional high-order bits are taken
from the status register. Note that a CALL instruction
only includes 8 bits of address, and may only specify ad-
dresses in the first half of each 512-word page.
Lookup tables are implemented using a computed GOTO
(assignment to PCL register) into a table of RETLW in-
structions.
The instruction set is as follows. Register numbers are
referred to as “f”, while constants are referred to as “k”.
Bit numbers (0–7) are selected by “b”. The “d” bit selects
the destination: 0 indicates W, while 1 indicates that the
result is written back to source register f. The C and Z
status flags may be set based on the result; otherwise they
are unmodified. Add and subtract (but not rotate) instruc-
tions that set C also set the DC (digit carry) flag, the carry
from bit 3 to bit 4, which is useful for BCD arithmetic.

6.3.2 ELAN Microelectronics clones (13
bit)

ELAN Microelectronics Corp. make a series of
PICmicro-like microcontrollers with a 13-bit instruction
word.[13] The instructions are mostly compatible with the
mid-range 14-bit instruction set, but limited to a 6-bit reg-
ister address (16 special-purpose registers and 48 bytes of
RAM) and a 10-bit (1024 word) program space.
The 10-bit program counter is accessible as R2. Reads
access only the low bits, and writes clear the high bits.
An exception is the TBL instruction, which modifies the
low byte while preserving bits 8 and 9.
The 7 accumulator-immediate instructions are renum-
bered relative to the 14-bit PICmicro, to fit into 3 opcode

bits rather than 4, but they are all there, as well as an ad-
ditional software interrupt instruction.
There are a few additional miscellaneous instructions, and
there are some changes to the terminology (the PICmi-
cro OPTION register is called the CONTrol register; the
PICmicro TRIS registers 1–3 are called I/O control reg-
isters 5–7), but the equivalents are obvious.
*: Same opcode as 12-bit PIC
†: Instruction unique to EM78 instruction set with no PIC
equivalent
Some models support multiple ROM or RAM banks, in
a manner similar to other PIC microcontrollers.

6.3.3 Mid-range core devices (14 bit)

These devices feature a 14-bit wide code memory, and
an improved 8 level deep call stack. The instruction set
differs very little from the baseline devices, but the 2 ad-
ditional opcode bits allow 128 registers and 2048 words
of code to be directly addressed. There are a few addi-
tional miscellaneous instructions, and two additional 8-bit
literal instructions, add and subtract. The mid-range core
is available in the majority of devices labeled PIC12 and
PIC16.
The first 32 bytes of the register space are allocated to
special-purpose registers; the remaining 96 bytes are used
for general-purpose RAM. If banked RAM is used, the
high 16 registers (0x70–0x7F) are global, as are a few
of the most important special-purpose registers, includ-
ing the STATUS register which holds the RAM bank se-
lect bits. (The other global registers are FSR and INDF,
the low 8 bits of the program counter PCL, the PC high
preload register PCLATH, and the master interrupt con-
trol register INTCON.)
The PCLATH register supplies high-order instruction ad-
dress bits when the 8 bits supplied by a write to the PCL
register, or the 11 bits supplied by a GOTO or CALL in-
struction, is not sufficient to address the available ROM
space.

6.3.4 Enhancedmid-range core devices (14
bit)

Enhanced mid-range core devices introduce a deeper
hardware stack, additional reset methods, 14 additional
instructions and ‘C’ programming language optimiza-
tions. In particular. there are two INDF registers (INDF0
and INDF1), and two corresponding FSR register pairs
(FSRnL and FSRnH). Special instructions use FSRn reg-
isters like address registers, with a variety of addressing
modes.

https://en.wikipedia.org/wiki/Binary-coded_decimal
https://en.wikipedia.org/wiki/List_of_common_microcontrollers#ELAN_Microelectronics_Corp.
https://en.wikipedia.org/wiki/Addressing_mode
https://en.wikipedia.org/wiki/Addressing_mode

6.3. FAMILY CORE ARCHITECTURAL DIFFERENCES 41

6.3.5 PIC17 high end core devices (16 bit)

The 17 series never became popular and has been super-
seded by the PIC18 architecture. It is not recommended
for new designs, and availability may be limited.
Improvements over earlier cores are 16-bit wide opcodes
(allowing many new instructions), and a 16 level deep call
stack. PIC17 devices were produced in packages from 40
to 68 pins.
The 17 series introduced a number of important new fea-
tures:

• a memory mapped accumulator

• read access to code memory (table reads)

• direct register to register moves (prior cores needed
to move registers through the accumulator)

• an external programmemory interface to expand the
code space

• an 8-bit × 8-bit hardware multiplier

• a second indirect register pair

• auto-increment/decrement addressing controlled by
control bits in a status register (ALUSTA)

6.3.6 PIC18 high end core devices (8 bit)

In 2000, Microchip introduced the PIC18 architecture.
Unlike the 17 series, it has proven to be very popular,
with a large number of device variants presently in man-
ufacture. In contrast to earlier devices, which were more
often than not programmed in assembly, C has become
the predominant development language.[15]

The 18 series inherits most of the features and instruc-
tions of the 17 series, while adding a number of important
new features:

• call stack is 21 bits wide and much deeper (31 levels
deep)

• the call stack may be read and written (TOSU:
TOSH:TOSL registers)

• conditional branch instructions

• indexed addressing mode (PLUSW)

• extending the FSR registers to 12 bits, allowing them
to linearly address the entire data address space

• the addition of another FSR register (bringing the
number up to 3)

The RAM space is 12 bits, addressed using a 4-bit bank
select register and an 8-bit offset in each instruction. An
additional “access” bit in each instruction selects between
bank 0 (a=0) and the bank selected by the BSR (a=1).
A 1-level stack is also available for the STATUS, WREG
and BSR registers. They are saved on every interrupt, and
may be restored on return. If interrupts are disabled, they
may also be used on subroutine call/return by setting the
s bit (appending extquotedbl, FAST” to the instruction).
The auto increment/decrement feature was improved by
removing the control bits and adding four new indirect
registers per FSR. Depending on which indirect file reg-
ister is being accessed it is possible to postdecrement,
postincrement, or preincrement FSR; or form the effec-
tive address by adding W to FSR.
In more advanced PIC18 devices, an “extended mode” is
available which makes the addressing even more favor-
able to compiled code:

• a new offset addressingmode; some addresses which
were relative to the access bank are now interpreted
relative to the FSR2 register

• the addition of several new instructions, notable for
manipulating the FSR registers.

These changes were primarily aimed at improving the
efficiency of a data stack implementation. If FSR2 is
used either as the stack pointer or frame pointer, stack
items may be easily indexed—allowing more efficient
re-entrant code. Microchip’s MPLAB C18 C compiler
chooses to use FSR2 as a frame pointer.

6.3.7 PIC24 and dsPIC 16-bit microcon-
trollers

In 2001, Microchip introduced the dsPIC series of
chips,[17] which entered mass production in late 2004.
They are Microchip’s first inherently 16-bit microcon-
trollers. PIC24 devices are designed as general purpose
microcontrollers. dsPIC devices include digital signal
processing capabilities in addition.
Although still similar to earlier PIC architectures, there
are significant enhancements:[18]

• All registers are 16 bits wide

• Data address space expanded to 64 KB

• First 2 KB is reserved for peripheral control registers

• Data bank switching is not required unless RAM ex-
ceeds 62 KB

• “f operand” direct addressing extended to 13 bits (8
KB)

https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/Kilobyte

42 CHAPTER 6. PIC MICROCONTROLLER

• 16 W registers available for register-register opera-
tions.

(But operations on f operands always reference W0.)

• Program counter is 22 bits (Bits 22:1; bit 0 is always
0)

• Instructions are 24 bits wide

• Instructions come in byte (B=1) and (16-bit) word
(B=0) forms

• Stack is in RAM (with W15 as stack pointer); there
is no hardware stack

• W14 is the frame pointer

• Data stored in ROMmay be accessed directly (“Pro-
gram Space Visibility”)

• Interrupt vectors for different interrupt sources are
supported.

Some features are:

• hardware MAC (multiply–accumulate)

• barrel shifting

• bit reversal

• (16×16)-bit single-cycle multiplication and other
DSP operations

• hardware divide assist (19 cycles for 16/32-bit di-
vide)

• hardware support for loop indexing

• Direct memory access

dsPICs can be programmed in C usingMicrochip’s XC16
compiler (formerly called C30) which is a variant of
GCC.
Instruction ROM is 24 bits wide. Software can access
ROM in 16-bit words, where even words hold the least
significant 16 bits of each instruction, and odd words hold
the most significant 8 bits. The high half of odd words
reads as zero. The program counter is 23 bits wide, but
the least significant bit is always 0, so there are 22 modi-
fiable bits.
Instructions come in 2main varieties. One is like the clas-
sic PIC instructions, with an operation betweenW0 and a
value in a specified f register (i.e. the first 8K of RAM),
and a destination select bit selecting which is updated with
the result. The W registers are memory-mapped. so the
f operand may be any W register,
The other form, new to the PIC24, specifies 3 W regis-
ter operands, 2 of which allow a 3-bit addressing mode
specification:

The register offset addressing mode is only available to
2-operand instructions. 3-operand instructions use Ww
as the second source operand, and use this encoding for
an unsigned 5-bit immediate source. Note that the same
Ww may be added to both Wd and Ws.
A few instructions are 2 words long. The second word is
a NOP, which includes up to 16 bits of additional imme-
diate operand.

6.3.8 PIC32 32-bit microcontrollers

In November 2007, Microchip introduced the new
PIC32MX family of 32-bit microcontrollers. The initial
device line-up is based on the industry standard MIPS32
M4K Core.[20] The device can be programmed using the
MicrochipMPLABCCompiler for PIC32MCUs, a vari-
ant of the GCC compiler. The first 18 models currently
in production (PIC32MX3xx and PIC32MX4xx) are pin
to pin compatible and share the same peripherals set with
the PIC24FxxGA0xx family of (16-bit) devices allow-
ing the use of common libraries, software and hardware
tools. Today starting at 28 pin in small QFN packages
up to high performance devices with Ethernet, CAN and
USB OTG, full family range of mid-range 32-bit micro-
controllers are available.
The PIC32 architecture brings a number of new features
to Microchip portfolio, including:

• The highest execution speed 80 MIPS (120+[21]
Dhrystone MIPS @ 80 MHz)

• The largest flash memory: 512 KB
• One instruction per clock cycle execution
• The first cached processor
• Allows execution from RAM
• Full Speed Host/Dual Role and OTG USB capabil-
ities

• Full JTAG and 2 wire programming and debugging
• Real-time trace

An upcoming product from Microchip is the PIC32MZ
family of microcontrollers.

6.4 Device variants and hardware
features

PIC devices generally feature:

• Sleep mode (power savings)
• Watchdog timer
• Various crystal or RC oscillator configurations, or an
external clock

https://en.wikipedia.org/wiki/Multiply–accumulate
https://en.wikipedia.org/wiki/Barrel_shifter
https://en.wikipedia.org/wiki/Direct_memory_access
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://ww1.microchip.com/downloads/en/DeviceDoc/61177a.pdf
https://en.wikipedia.org/wiki/MIPS_architecture
https://en.wikipedia.org/wiki/MIPS_architecture
http://microchip.com/c32
https://en.wikipedia.org/wiki/Dhrystone
https://en.wikipedia.org/wiki/Joint_Test_Action_Group
http://www.microchip.com/pagehandler/en-us/press-release/microchips-pic32mz-32-bit-mcus.html
https://en.wikipedia.org/wiki/Watchdog_timer
https://en.wikipedia.org/wiki/RC_circuit

6.5. DEVELOPMENT TOOLS 43

6.4.1 Variants

Within a series, there are still many device variants de-
pending on what hardware resources the chip features:

• General purpose I/O pins

• Internal clock oscillators

• 8/16/32 bit timers

• Internal EEPROM memory

• Synchronous/Asynchronous Serial Interface
USART

• MSSP Peripheral for I²C and SPI communications

• Capture/Compare and PWM modules

• Analog-to-digital converters (up to ~1.0 MHz)

• USB, Ethernet, CAN interfacing support

• External memory interface

• Integrated analog RF front ends (PIC16F639, and
rfPIC).

• KEELOQ Rolling code encryption peripheral (en-
code/decode)

• And many more

6.4.2 Trends

The first generation of PICs with EPROM storage are
almost completely replaced by chips with Flash mem-
ory. Likewise, the original 12-bit instruction set of the
PIC1650 and its direct descendants has been superseded
by 14-bit and 16-bit instruction sets. Microchip still
sells OTP (one-time-programmable) and windowed (UV-
erasable) versions of some of its EPROM based PICs for
legacy support or volume orders. The Microchip web-
site lists PICs that are not electrically erasable as OTP.
UV erasable windowed versions of these chips can be or-
dered.

6.4.3 Part number suffixes

The F in a name generally indicates the PICmicro uses
flash memory and can be erased electronically. Con-
versely, a C generally means it can only be erased by ex-
posing the die to ultraviolet light (which is only possible
if a windowed package style is used). An exception to
this rule is the PIC16C84 which uses EEPROM and is
therefore electrically erasable.
An L in the name indicates the part will run at a lower
voltage, often with frequency limits imposed.[22]

Parts designed specifically for low voltage operation,
within a strict range of 3 - 3.6 volts, are marked with a
J in the part number. These parts are also uniquely I/O
tolerant as they will accept up to 5 V as inputs.[22]

6.4.4 PIC clones

Third party manufacturers make compatible products, for
example the Parallax SX.

6.5 Development tools

Microchip provides a freeware IDE package called
MPLAB, which includes an assembler, linker, software
simulator, and debugger. They also sell C compilers
for the PIC18 and dsPIC which integrate cleanly with
MPLAB. Free student versions of the C compilers are
also available with all features. But for the free versions,
optimizations will be disabled after 60 days.[23]

Several third partiesmakeC language compilers for PICs,
many of which integrate to MPLAB and/or feature their
own IDE. A fully featured compiler for the PICBASIC
language to program PIC microcontrollers is available
from meLabs, Inc. Mikroelektronika offers PIC compil-
ers in C, Basic and Pascal programming languages.
A graphical programming language, Flowcode, exists ca-
pable of programming 8 and 16 bit PIC devices and gen-
erating PIC compatible C code. It exists in numerous
versions from a free demonstration to a more complete
professional edition.
The only opensource compiler for the PIC16 and PIC18
family is the SDCC. It make use of GPutils for linker
and assembler tools. A plugin is needed to install them in
MPLAB or MPLABX.[24]

Development tools are available for the PIC family under
the GPL or other free software or open source licenses.

6.6 Device programmers

Main article: PICKit

Devices called extquotedblprogrammers extquotedbl are
traditionally used to get program code into the target PIC.
Most PICs that Microchip currently sell feature ICSP (In
Circuit Serial Programming) and/or LVP (Low Voltage
Programming) capabilities, allowing the PIC to be pro-
grammed while it is sitting in the target circuit. ICSP pro-
gramming is performed using two pins, clock and data,
while a high voltage (12V) is present on the Vpp/MCLR
pin. Low voltage programming dispenses with the high
voltage, but reserves exclusive use of an I/O pin and can
therefore be disabled to recover the pin for other uses

https://en.wikipedia.org/wiki/GPIO
https://en.wikipedia.org/wiki/EEPROM
https://en.wikipedia.org/wiki/USART
https://en.wikipedia.org/wiki/I²C
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Analog-to-digital_converter
https://en.wikipedia.org/wiki/Hertz
https://en.wikipedia.org/wiki/Ethernet
https://en.wikipedia.org/wiki/Controller_Area_Network
https://en.wikipedia.org/wiki/KeeLoq
https://en.wikipedia.org/wiki/EPROM
https://en.wikipedia.org/wiki/Flash_memory
https://en.wikipedia.org/wiki/Flash_memory
https://en.wikipedia.org/wiki/Parallax_SX
https://en.wikipedia.org/wiki/Freeware
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/MPLAB
https://en.wikipedia.org/wiki/Simulator
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Compilers
https://en.wikipedia.org/wiki/Mikroelektronika
https://en.wikipedia.org/wiki/Flowcode
https://en.wikipedia.org/wiki/Small_Device_C_Compiler
https://en.wikipedia.org/wiki/GPutils
https://en.wikipedia.org/wiki/GPL
https://en.wikipedia.org/wiki/PICKit
https://en.wikipedia.org/wiki/Programmer_(hardware)
https://en.wikipedia.org/wiki/In_Circuit_Serial_Programming_(ICSP)
https://en.wikipedia.org/wiki/Low_Voltage_Programming
https://en.wikipedia.org/wiki/Electronic_circuit

44 CHAPTER 6. PIC MICROCONTROLLER

(once disabled it can only be re-enabled using high volt-
age programming).
There are many programmers for PIC microcontrollers,
ranging from the extremely simple designs which rely on
ICSP to allow direct download of code from a host com-
puter, to intelligent programmers that can verify the de-
vice at several supply voltages. Many of these complex
programmers use a pre-programmed PIC themselves to
send the programming commands to the PIC that is to
be programmed. The intelligent type of programmer is
needed to program earlier PIC models (mostly EPROM
type) which do not support in-circuit programming.
Many of the higher end flash based PICs can also self-
program (write to their own program memory). Demo
boards are available with a small bootloader factory pro-
grammed that can be used to load user programs over an
interface such as RS-232 or USB, thus obviating the need
for a programmer device. Alternatively there is boot-
loader firmware available that the user can load onto the
PIC using ICSP. The advantages of a bootloader over
ICSP is the far superior programming speeds, immedi-
ate program execution following programming, and the
ability to both debug and program using the same cable.
Programmers/debuggers are available directly from Mi-
crochip. Third party programmers range from plans to
build your own, to self-assembly kits and fully tested
ready-to-go units. Some are simple designs which require
a PC to do the low-level programming signalling (these
typically connect to the serial or parallel port and con-
sist of a few simple components), while others have the
programming logic built into them (these typically use a
serial or USB connection, are usually faster, and are often
built using PICs themselves for control).
The following are the official PICkit program-
mer/debuggers from Microchip:

• Microchip PICkit1

• Microchip PICkit2

• Microchip PICkit3

6.6.1 PICKit 2 clones and open source

PICKit 2 has been an interesting PIC programmer from
Microchip. It can program most PICs and debug most of
the PICs (as of May-2009, only the PIC32 family is not
supported for MPLAB debugging). Ever since its first
releases, all software source code (firmware, PC applica-
tion) and hardware schematic are open to the public. This
makes it relatively easy for an end user to modify the pro-
grammer for use with a non-Windows operating system
such as Linux or Mac OS. In the mean time, it also cre-
ates lots of DIY interest and clones. This open source
structure brings many features to the PICKit 2 commu-
nity such as Programmer-to-Go, the UART Tool and the

Logic Tool, which have been contributed by PICKit 2
users. Users have also added such features to the PICKit
2 as 4MB Programmer-to-go capability, USB buck/boost
circuits, RJ12 type connectors and others.

6.7 Debugging

6.7.1 Software emulation

Commercial and free emulators exist for the PIC family
processors.

6.7.2 In-circuit debugging

Later model PICs feature an ICD (in-circuit debugging)
interface, built into the CPU core. ICD debuggers
(MPLAB ICD2 and other third party) can communicate
with this interface using three lines. This cheap and sim-
ple debugging system comes at a price however, namely
limited breakpoint count (1 on older pics 3 on newer
PICs), loss of some IO (with the exception of some sur-
face mount 44-pin PICs which have dedicated lines for
debugging) and loss of some features of the chip. For
small PICs, where the loss of IO caused by this method
would be unacceptable, special headers are made which
are fitted with PICs that have extra pins specifically for
debugging.

6.7.3 In-circuit emulators

Microchip offers three full in-circuit emulators: the
MPLAB ICE2000 (parallel interface, a USB converter
is available); the newer MPLAB ICE4000 (USB 2.0 con-
nection); and most recently, the REAL ICE. All of these
ICE tools can be used with the MPLAB IDE for full
source-level debugging of code running on the target.
The ICE2000 requires emulator modules, and the test
hardware must provide a socket which can take either an
emulator module, or a production device.
The REAL ICE connects directly to production de-
vices which support in-circuit emulation through the
PGC/PGD programming interface, or through a high
speed connection which uses two more pins. According
to Microchip, it supports “most” flash-based PIC, PIC24,
and dsPIC processors.[25]

The ICE4000 is no longer directly advertised on Mi-
crochip’s website, and the purchasing page states that it
is not recommended for new designs.

https://en.wikipedia.org/wiki/RS-232
https://en.wikipedia.org/wiki/Universal_Serial_Bus
https://en.wikipedia.org/wiki/Serial_port
https://en.wikipedia.org/wiki/Parallel_port
https://en.wikipedia.org/wiki/In-circuit_emulator

6.11. EXTERNAL LINKS 45

6.8 Operating systems

An open source project by Serge Vakulenko adapts
2.11BSD to the PIC32 architecture, under the name
RetroBSD. This brings a familiar Unix-like operating sys-
tem, including an on board development environment, to
the microcontroller, within the constraints of the onboard
hardware.[26]

6.9 See also

• PIC16x84

• Atmel AVR

• Arduino

• BASIC Atom

• BASIC Stamp

• OOPic

• PICAXE

• TI MSP430

• Maximite

6.10 References
[1] http://ww1.microchip.com/downloads/en/DeviceDoc/

39630C.pdf

[2] http://www.datasheetarchive.com/dl/Databooks-1/
Book241-407.pdf

[3] “PICmicro Family Tree”, PIC16F Seminar Presen-
tation http://www.microchip.com.tw/PDF/2004_spring/
PIC16F%20seminar%20presentation.pdf

[4] “MOS DATA 1976”, General Instrument 1976 Databook

[5] “1977 Data Catalog”, Micro Electronics from General
Instrument Corporation http://www.rhoent.com/pic16xx.
pdf

[6] Microchip press release. “Microchip Technology Deliv-
ers 12 Billionth PIC® Microcontroller to Leading Motor
Manufacturer, Nidec Corporation”. 2013.

[7] http://ww1.microchip.com/downloads/en/DeviceDoc/
35007b.pdf

[8] “AN869: External Memory Interfacing Techniques for
the PIC18F8XXX”. Retrieved 24 August 2009.

[9] Microchip Product Selector

[10] “PIC Paging and PCLATH”

[11] “MPLAB® XC: Compiler Solutions”

[12] PIC10F200/202/204/206 Data Sheet. Microchip Tech-
nology. 2007. p. 52.

[13] http://www.emc.com.tw/eng/products.asp

[14] ELAN Microelectronics Corp. (September 2005),
EM78P157N 8-bit microcontroller with OTP ROM Prod-
uct Specification, retrieved 2012-04-02

[15] http://www.microchipc.com/sourcecode/

[16] Microchip Technology, Inc. (2007), PIC18F1220/1320
Data Sheet, retrieved 2012-04-02

[17]

[18] “PIC24H Family Overview”. Retrieved 23 September
2007.

[19] dsPIC30F Programmer’s Reference Manual, Microchip
Technology, 2008, DS70157C, retrieved 2012-07-02

[20] http://www.mips.com/products/processors/
32-64-bit-cores/mips32-m4k/

[21] “32-bit PIC MCUs”. Retrieved 13 October 2010.

[22] “3V Design Center”. Retrieved 2 August 2011.

[23] “MPLAB C Compiler for PIC18 MCUs”.

[24] “SDCC plugin for MPLABX”.

[25] “MPLAB REAL ICE In-Circuit Emulator Product
Overview”. Retrieved 23 September 2007.

[26] RetroBSD start

6.11 External links
• PIC microcontroller at DMOZ.

• Official Microchip website

• PIC wifi projects website

https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
https://en.wikipedia.org/wiki/PIC16x84
https://en.wikipedia.org/wiki/Atmel_AVR
https://en.wikipedia.org/wiki/Arduino
https://en.wikipedia.org/wiki/BASIC_Atom
https://en.wikipedia.org/wiki/BASIC_Stamp
https://en.wikipedia.org/wiki/OOPic
https://en.wikipedia.org/wiki/PICAXE
https://en.wikipedia.org/wiki/TI_MSP430
https://en.wikipedia.org/wiki/Maximite
http://ww1.microchip.com/downloads/en/DeviceDoc/39630C.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/39630C.pdf
http://www.datasheetarchive.com/dl/Databooks-1/Book241-407.pdf
http://www.datasheetarchive.com/dl/Databooks-1/Book241-407.pdf
http://www.microchip.com.tw/PDF/2004_spring/PIC16F%20seminar%20presentation.pdf
http://www.microchip.com.tw/PDF/2004_spring/PIC16F%20seminar%20presentation.pdf
http://www.rhoent.com/pic16xx.pdf
http://www.rhoent.com/pic16xx.pdf
http://www.microchip.com/pagehandler/en-us/press-release/microchips-12-billionth-pic-mi.html
http://www.microchip.com/pagehandler/en-us/press-release/microchips-12-billionth-pic-mi.html
http://www.microchip.com/pagehandler/en-us/press-release/microchips-12-billionth-pic-mi.html
http://ww1.microchip.com/downloads/en/DeviceDoc/35007b.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/35007b.pdf
http://ww1.microchip.com/downloads/en/AppNotes/00869b.pdf
http://ww1.microchip.com/downloads/en/AppNotes/00869b.pdf
http://www.microchip.com/productselector/MCUProductSelector.html
http://massmind.org/techref/microchip/pages.htm
http://www.microchip.com/pagehandler/en_us/devtools/mplabxc/
http://ww1.microchip.com/downloads/en/DeviceDoc/41239D.pdf
http://www.emc.com.tw/eng/products.asp
http://www.emc.com.tw/eng/database/Data_Sheet/8BIT/EM78P157N.pdf
http://www.emc.com.tw/eng/database/Data_Sheet/8BIT/EM78P157N.pdf
http://www.microchipc.com/sourcecode/
http://ww1.microchip.com/downloads/en/DeviceDoc/39605F.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/39605F.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/70166A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/70157C.pdf
http://www.mips.com/products/processors/32-64-bit-cores/mips32-m4k/
http://www.mips.com/products/processors/32-64-bit-cores/mips32-m4k/
http://www.microchip.com/en_US/family/pic32/
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2530
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en010014
https://sites.google.com/site/rmaalmeida/mplabx-sdcc-toolchain
http://ww1.microchip.com/downloads/en/DeviceDoc/51630a.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/51630a.pdf
http://retrobsd.org/wiki/doku.php
http://www.dmoz.org/Computers/Hardware/Components/Processors/PIC/
https://en.wikipedia.org/wiki/DMOZ
http://www.microchip.com/
http://www.libstock.com/project_categories/view/25/wifi/

Chapter 7

Pulse-width modulation

V B

B
 (T

),
V

 (V
)

1.5

1.0

0.5

0

-0.5

-1.0

-1.5
0 5 10 15 20(ms)

An example of PWM in an AC motor drive: the phase-to-phase
voltage (blue) is modulated as a series of pulses that results in
a sine-like flux density waveform (red) in the magnetic circuit
of the motor. The smoothness of the resultant waveform can
be controlled by the width (number) of modulated impulses (per
given cycle)

Pulse-width modulation (PWM), or pulse-duration
modulation (PDM), is a modulation technique that con-
trols the width of the pulse, formally the pulse duration,
based on modulator signal information. Although this
modulation technique can be used to encode information
for transmission, its main use is to allow the control of the
power supplied to electrical devices, especially to inertial
loads such as motors. In addition, PWM is one of the
two principal algorithms used in photovoltaic solar bat-
tery chargers,[1] the other being MPPT.
The average value of voltage (and current) fed to the load
is controlled by turning the switch between supply and
load on and off at a fast pace. The longer the switch is on
compared to the off periods, the higher the power sup-
plied to the load.
The PWM switching frequency has to be much higher
than what would affect the load (the device that uses the
power), which is to say that the resultant waveform per-
ceived by the load must be as smooth as possible. Typi-
cally switching has to be done several times a minute in
an electric stove, 120 Hz in a lamp dimmer, from few
kilohertz (kHz) to tens of kHz for a motor drive and well
into the tens or hundreds of kHz in audio amplifiers and
computer power supplies.

The term duty cycle describes the proportion of 'on' time
to the regular interval or 'period' of time; a low duty cy-
cle corresponds to low power, because the power is off
for most of the time. Duty cycle is expressed in percent,
100% being fully on.
The main advantage of PWM is that power loss in the
switching devices is very low. When a switch is off there
is practically no current, andwhen it is on and power is be-
ing transferred to the load, there is almost no voltage drop
across the switch. Power loss, being the product of volt-
age and current, is thus in both cases close to zero. PWM
also works well with digital controls, which, because of
their on/off nature, can easily set the needed duty cycle.
PWM has also been used in certain communication sys-
tems where its duty cycle has been used to convey infor-
mation over a communications channel.

7.1 History

In the past, when only partial power was needed (such
as for a sewing machine motor), a rheostat (located in
the sewing machine’s foot pedal) connected in series with
the motor adjusted the amount of current flowing through
the motor, but also wasted power as heat in the resistor
element. It was an inefficient scheme, but tolerable be-
cause the total power was low. This was one of several
methods of controlling power. There were others—some
still in use—such as variable autotransformers, including
the trademarked 'Autrastat' for theatrical lighting; and the
Variac, for general AC power adjustment. These were
quite efficient, but also relatively costly.
For about a century, some variable-speed electric motors
have had decent efficiency, but they were somewhat more
complex than constant-speed motors, and sometimes re-
quired bulky external electrical apparatus, such as a bank
of variable power resistors or rotating converter such as
Ward Leonard drive.
However, in addition to motor drives for fans, pumps and
robotic servos, there was a great need for compact and
low cost means for applying adjustable power for many
devices, such as electric stoves and lamp dimmers.
One early application of PWMwas in the Sinclair X10, a

46

https://en.wikipedia.org/wiki/Modulation
https://en.wikipedia.org/wiki/Photovoltaic
https://en.wikipedia.org/wiki/MPPT
https://en.wikipedia.org/wiki/Electrical_load
https://en.wikipedia.org/wiki/Hertz
https://en.wikipedia.org/wiki/Duty_cycle
https://en.wikipedia.org/wiki/Signalling_(telecommunication)
https://en.wikipedia.org/wiki/Signalling_(telecommunication)
https://en.wikipedia.org/wiki/Sewing_machine
https://en.wikipedia.org/wiki/Rheostat
https://en.wikipedia.org/wiki/Autotransformer
https://en.wikipedia.org/wiki/Trademark
https://en.wikipedia.org/wiki/Variac
https://en.wikipedia.org/wiki/Ward_Leonard_control
https://en.wikipedia.org/wiki/Robotics
https://en.wikipedia.org/wiki/Servomechanism
https://en.wikipedia.org/wiki/Sinclair_Radionics

7.2. PRINCIPLE 47

10 W audio amplifier available in kit form in the 1960s.
At around the same time PWM started to be used in AC
motor control.[2]

7.2 Principle

ymin

ymax

0 D.T T (T+D.T) 2T (2T+D.T) 3T (3T+D.T)

A
m

pl
itu

de

Time

Fig. 1: a pulse wave, showing the definitions of ymin , ymax

and D.

Pulse-width modulation uses a rectangular pulse wave
whose pulse width is modulated resulting in the variation
of the average value of the waveform. If we consider a
pulse waveform f(t) , with period T , low value ymin ,
a high value ymax and a duty cycle D (see figure 1), the
average value of the waveform is given by:

ȳ =
1

T

∫ T

0

f(t) dt.

As f(t) is a pulse wave, its value is ymax for 0 < t <
D ·T and ymin forD ·T < t < T . The above expression
then becomes:

ȳ =
1

T

(∫ DT

0

ymax dt+

∫ T

DT

ymin dt

)

=
D · T · ymax + T (1−D) ymin

T
= D · ymax + (1−D) ymin.

This latter expression can be fairly simplified in many
cases where ymin = 0 as ȳ = D · ymax . From this,
it is obvious that the average value of the signal (ȳ) is
directly dependent on the duty cycle D.
The simplest way to generate a PWM signal is the in-
tersective method, which requires only a sawtooth or
a triangle waveform (easily generated using a simple
oscillator) and a comparator. When the value of the ref-
erence signal (the red sine wave in figure 2) is more than
the modulation waveform (blue), the PWM signal (ma-
genta) is in the high state, otherwise it is in the low state.

7.2.1 Delta

Main article: Delta modulation

0

1

so
ur

ce
 s

ig
na

ls

0

1

PW
M

 s
ig

na
l

Time

Fig. 2: A simple method to generate the PWM pulse train cor-
responding to a given signal is the intersective PWM: the signal
(here the red sinewave) is compared with a sawtooth waveform
(blue). When the latter is less than the former, the PWM signal
(magenta) is in high state (1). Otherwise it is in the low state (0).

In the use of delta modulation for PWM control, the out-
put signal is integrated, and the result is compared with
limits, which correspond to a Reference signal offset by
a constant. Every time the integral of the output signal
reaches one of the limits, the PWM signal changes state.
Figure 3

-1

0

1

A
na

lo
g

si
gn

al
s

Reference
Limits
Output

0

1

D
el

ta
-P

W
M

 s
ig

na
l

Time

Fig. 3 : Principle of the delta PWM. The output signal (blue)
is compared with the limits (green). These limits correspond to
the reference signal (red), offset by a given value. Every time the
output signal (blue) reaches one of the limits, the PWM signal
changes state.

7.2.2 Delta-sigma

Main article: Delta-sigma modulation

In delta-sigma modulation as a PWM control method, the
output signal is subtracted from a reference signal to form
an error signal. This error is integrated, and when the
integral of the error exceeds the limits, the output changes
state. Figure 4

https://en.wikipedia.org/wiki/Pulse_wave
https://en.wikipedia.org/wiki/Rectangular_wave
https://en.wikipedia.org/wiki/Average
https://en.wikipedia.org/wiki/Duty_cycle
https://en.wikipedia.org/wiki/Sawtooth_wave
https://en.wikipedia.org/wiki/Triangle_wave
https://en.wikipedia.org/wiki/Electronic_oscillator
https://en.wikipedia.org/wiki/Comparator
https://en.wikipedia.org/wiki/Delta_modulation
https://en.wikipedia.org/wiki/Delta-sigma_modulation

48 CHAPTER 7. PULSE-WIDTH MODULATION

R
ef

. a
nd

 E
rr

or
In

te
gr

at
io

n
Σ

-Δ
 P

W
M

Time

Fig. 4 : Principle of the sigma-delta PWM. The top green wave-
form is the reference signal, on which the output signal (PWM, in
the bottom plot) is subtracted to form the error signal (blue, in top
plot). This error is integrated (middle plot), and when the inte-
gral of the error exceeds the limits (red lines), the output changes
state.

7.2.3 Space vector modulation

Main article: Space vector modulation

Space vector modulation is a PWM control algorithm for
multi-phase AC generation, in which the reference signal
is sampled regularly; after each sample, non-zero active
switching vectors adjacent to the reference vector and one
or more of the zero switching vectors are selected for the
appropriate fraction of the sampling period in order to
synthesize the reference signal as the average of the used
vectors.

7.2.4 Direct torque control (DTC)

Main article: Direct torque control

Direct torque control is a method used to control AC
motors. It is closely related with the delta modulation
(see above). Motor torque and magnetic flux are esti-
mated and these are controlled to stay within their hys-
teresis bands by turning on new combination of the de-
vice’s semiconductor switches each time either of the sig-
nal tries to deviate out of the band.

7.2.5 Time proportioning

Many digital circuits can generate PWM signals (e.g.,
many microcontrollers have PWM outputs). They nor-
mally use a counter that increments periodically (it is
connected directly or indirectly to the clock of the cir-
cuit) and is reset at the end of every period of the PWM.
When the counter value is more than the reference value,

the PWM output changes state from high to low (or low
to high).[3] This technique is referred to as time propor-
tioning, particularly as time-proportioning control[4] –
which proportion of a fixed cycle time is spent in the high
state.
The incremented and periodically reset counter is the dis-
crete version of the intersecting method’s sawtooth. The
analog comparator of the intersecting method becomes a
simple integer comparison between the current counter
value and the digital (possibly digitized) reference value.
The duty cycle can only be varied in discrete steps, as
a function of the counter resolution. However, a high-
resolution counter can provide quite satisfactory perfor-
mance.

7.2.6 Types

0

1
le

ad

0

1

tr
ai

l

0

1

0 T 2 T 4 T 6 T 8 T 10 T 12 T 14 T 16 T 18 T

ce
nt

er

Fig. 5 : Three types of PWM signals (blue): leading edge mod-
ulation (top), trailing edge modulation (middle) and centered
pulses (both edges are modulated, bottom). The green lines are
the sawtooth waveform (first and second cases) and a triangle
waveform (third case) used to generate the PWM waveforms us-
ing the intersective method.

Three types of pulse-width modulation (PWM) are pos-
sible:

1. The pulse center may be fixed in the center of the
time window and both edges of the pulse moved to
compress or expand the width.

2. The lead edge can be held at the lead edge of the
window and the tail edge modulated.

3. The tail edge can be fixed and the lead edge modu-
lated.

7.2.7 Spectrum

The resulting spectra (of the three cases) are similar, and
each contains a dc component, a base sideband contain-
ing the modulating signal and phase modulated carriers at

https://en.wikipedia.org/wiki/Space_vector_modulation
https://en.wikipedia.org/wiki/Direct_torque_control
https://en.wikipedia.org/wiki/Microcontrollers
https://en.wikipedia.org/wiki/Counter
https://en.wikipedia.org/wiki/Clock_signal
https://en.wikipedia.org/wiki/Cycle_time
https://en.wikipedia.org/wiki/Signal_edge
https://en.wikipedia.org/wiki/Spectrum
https://en.wikipedia.org/wiki/Direct_current
https://en.wikipedia.org/wiki/Carrier_wave

7.3. APPLICATIONS 49

each harmonic of the frequency of the pulse. The ampli-
tudes of the harmonic groups are restricted by a sinx/x
envelope (sinc function) and extend to infinity. The infi-
nite bandwidth is caused by the nonlinear operation of the
pulse-width modulator. In consequence, a digital PWM
suffers from aliasing distortion that significantly reduce
its applicability for modern communications system. By
limiting the bandwidth of the PWM kernel, aliasing ef-
fects can be avoided.[5]

On the contrary, the delta modulation is a random pro-
cess that produces continuous spectrum without distinct
harmonics.

7.2.8 PWM sampling theorem

The process of PWM conversion is non-linear and it is
generally supposed that low pass filter signal recovery
is imperfect for PWM. The PWM sampling theorem[6]

shows that PWM conversion can be perfect. The theo-
rem states that “Any bandlimited baseband signal within
±0.637 can be represented by a pulsewidth modulation
(PWM) waveform with unit amplitude. The number
of pulses in the waveform is equal to the number of
Nyquist samples and the peak constraint is independent
of whether the waveform is two-level or three-level.”

7.3 Applications

7.3.1 Servos

PWM is used to control servomechanisms, see servo con-
trol.

7.3.2 Telecommunications

In telecommunications, PWM is a form of signal
modulation where the widths of the pulses correspond to
specific data values encoded at one end and decoded at
the other.
Pulses of various lengths (the information itself) will be
sent at regular intervals (the carrier frequency of the mod-
ulation).
_ _ _ _ _ _ _ _ | | | | | | | | | | | | | | | | Clock | | | | | | | | | | |
| | | | | __| |____| |____| |____| |____| |____| |____| |____|
|____ _ __ ____ ____ _ PWM Signal | | | | | | | | | | | | | | | | | |
| | _________| |____| |___| |________| |_| |___________
Data 0 1 2 4 0 4 1 0
The inclusion of a clock signal is not necessary, as the
leading edge of the data signal can be used as the clock if
a small offset is added to the data value in order to avoid
a data value with a zero length pulse.
_ __ ___ _____ _ _____ __ _ | | | | | | | | | | | | | | | | PWM
Signal | | | | | | | | | | | | | | | | __| |____| |___| |__| |_| |____| |_|

|___| |_____ Data 0 1 2 4 0 4 1 0

7.3.3 Power delivery

PWM can be used to control the amount of power deliv-
ered to a load without incurring the losses that would re-
sult from linear power delivery by resistive means. Poten-
tial drawbacks to this technique are the pulsations defined
by the duty cycle, switching frequency and properties of
the load. With a sufficiently high switching frequency
and, when necessary, using additional passive electronic
filters, the pulse train can be smoothed and average analog
waveform recovered.
High frequency PWM power control systems are easily
realisable with semiconductor switches. As explained
above, almost no power is dissipated by the switch in
either on or off state. However, during the transitions
between on and off states, both voltage and current are
nonzero and thus power is dissipated in the switches. By
quickly changing the state between fully on and fully off
(typically less than 100 nanoseconds), the power dissi-
pation in the switches can be quite low compared to the
power being delivered to the load.
Modern semiconductor switches such as MOSFETs or
Insulated-gate bipolar transistors (IGBTs) are well suited
components for high efficiency controllers. Frequency
converters used to control AC motors may have effi-
ciencies exceeding 98%. Switching power supplies have
lower efficiency due to low output voltage levels (often
even less than 2 V for microprocessors are needed) but
still more than 70–80% efficiency can be achieved.
Variable-speed fan controllers for computers usually use
PWM, as it is far more efficient when compared to a
potentiometer or rheostat. (Neither of the latter is prac-
tical to operate electronically; they would require a small
drive motor.)
Light dimmers for home use employ a specific type of
PWM control. Home-use light dimmers typically include
electronic circuitry which suppresses current flow during
defined portions of each cycle of the AC line voltage. Ad-
justing the brightness of light emitted by a light source is
then merely a matter of setting at what voltage (or phase)
in the AC halfcycle the dimmer begins to provide electri-
cal current to the light source (e.g. by using an electronic
switch such as a triac). In this case the PWM duty cycle
is the ratio of the conduction time to the duration of the
half AC cycle defined by the frequency of the AC line
voltage (50 Hz or 60 Hz depending on the country).
These rather simple types of dimmers can be effectively
used with inert (or relatively slow reacting) light sources
such as incandescent lamps, for example, for which the
additional modulation in supplied electrical energy which
is caused by the dimmer causes only negligible additional
fluctuations in the emitted light. Some other types of
light sources such as light-emitting diodes (LEDs), how-

https://en.wikipedia.org/wiki/Harmonic
https://en.wikipedia.org/wiki/Sinc_function
https://en.wikipedia.org/wiki/Aliasing
https://en.wikipedia.org/wiki/Communications_systems
https://en.wikipedia.org/wiki/Servomechanism
https://en.wikipedia.org/wiki/Servo_control
https://en.wikipedia.org/wiki/Servo_control
https://en.wikipedia.org/wiki/Telecommunications
https://en.wikipedia.org/wiki/Modulation#Pulse_modulation_methods
https://en.wikipedia.org/wiki/Carrier_wave
https://en.wikipedia.org/wiki/Clock_signal
https://en.wikipedia.org/wiki/Electronic_filter
https://en.wikipedia.org/wiki/Electronic_filter
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/MOSFET
https://en.wikipedia.org/wiki/Insulated-gate_bipolar_transistor
https://en.wikipedia.org/wiki/Potentiometer
https://en.wikipedia.org/wiki/Rheostat
https://en.wikipedia.org/wiki/TRIAC

50 CHAPTER 7. PULSE-WIDTH MODULATION

ever, turn on and off extremely rapidly and would per-
ceivably flicker if supplied with low frequency drive volt-
ages. Perceivable flicker effects from such rapid response
light sources can be reduced by increasing the PWM fre-
quency. If the light fluctuations are sufficiently rapid, the
human visual system can no longer resolve them and the
eye perceives the time average intensity without flicker
(see flicker fusion threshold).
In electric cookers, continuously variable power is ap-
plied to the heating elements such as the hob or the grill
using a device known as a Simmerstat. This consists of
a thermal oscillator running at approximately two cycles
per minute and the mechanism varies the duty cycle ac-
cording to the knob setting. The thermal time constant of
the heating elements is several minutes, so that the tem-
perature fluctuations are too small to matter in practice.

7.3.4 Voltage regulation

Main article: Switched-mode power supply

PWM is also used in efficient voltage regulators. By
switching voltage to the load with the appropriate duty
cycle, the output will approximate a voltage at the de-
sired level. The switching noise is usually filtered with an
inductor and a capacitor.
One method measures the output voltage. When it is
lower than the desired voltage, it turns on the switch.
When the output voltage is above the desired voltage, it
turns off the switch.

7.3.5 Audio effects and amplification

PWM is sometimes used in sound (music) synthesis, in
particular subtractive synthesis, as it gives a sound effect
similar to chorus or slightly detuned oscillators played to-
gether. (In fact, PWM is equivalent to the difference of
two sawtooth waves with one of them inverted.) The ra-
tio between the high and low level is typically modulated
with a low frequency oscillator. In addition, varying the
duty cycle of a pulse waveform in a subtractive-synthesis
instrument creates useful timbral variations. Some syn-
thesizers have a duty-cycle trimmer for their square-wave
outputs, and that trimmer can be set by ear; the 50%
point (true square wave) was distinctive, because even-
numbered harmonics essentially disappear at 50%. Pulse
waves, usually 50%, 25%, and 12.5%, make up the
soundtracks of classic video games.
A new class of audio amplifiers based on the PWM prin-
ciple is becoming popular. Called extquotedblClass-D
amplifiers extquotedbl, they produce a PWM equivalent
of the analog input signal which is fed to the loudspeaker
via a suitable filter network to block the carrier and re-
cover the original audio. These amplifiers are character-
ized by very good efficiency figures (≥ 90%) and com-

pact size/light weight for large power outputs. For a few
decades, industrial and military PWM amplifiers have
been in common use, often for driving servo motors.
Field-gradient coils in MRI machines are driven by rel-
atively high-power PWM amplifiers.
Historically, a crude form of PWM has been used to play
back PCM digital sound on the PC speaker, which is
driven by only two voltage levels, typically 0 V and 5 V.
By carefully timing the duration of the pulses, and by re-
lying on the speaker’s physical filtering properties (limited
frequency response, self-inductance, etc.) it was possible
to obtain an approximate playback of mono PCM sam-
ples, although at a very low quality, and with greatly vary-
ing results between implementations.
In more recent times, the Direct Stream Digital sound
encoding method was introduced, which uses a general-
ized form of pulse-width modulation called pulse density
modulation, at a high enough sampling rate (typically in
the order of MHz) to cover the whole acoustic frequen-
cies range with sufficient fidelity. This method is used in
the SACD format, and reproduction of the encoded audio
signal is essentially similar to the method used in class-D
amplifiers.

7.3.6 Electrical

SPWM (Sine–triangle pulse width modulation) signals
are used in micro-inverter design (used in solar or wind
power applications). These switching signals are fed to
the FETs that are used in the device. The device’s ef-
ficiency depends on the harmonic content of the PWM
signal. There is much research on eliminating unwanted
harmonics and improving the fundamental strength, some
of which involves using a modified carrier signal instead
of a classic sawtooth signal [7][8][9] in order to decrease
power losses and improve efficiency. Another common
application is in robotics where PWM signals are used to
control the speed of the robot by controlling the motors.

7.4 See also

• Delta-sigma modulation

• Pulse-amplitude modulation

• Pulse-code modulation

• Pulse-density modulation

• Pulse-position modulation

• Radio control

• RC servo

• Sliding mode control - produces smooth behavior by
way of discontinuous switching in systems

https://en.wikipedia.org/wiki/Flicker_fusion_threshold
https://en.wikipedia.org/wiki/Energy_regulator
https://en.wikipedia.org/wiki/Switched-mode_power_supply
https://en.wikipedia.org/wiki/Voltage_regulator
https://en.wikipedia.org/wiki/Inductor
https://en.wikipedia.org/wiki/Capacitor
https://en.wikipedia.org/wiki/Subtractive_synthesis
https://en.wikipedia.org/wiki/Sawtooth_wave
https://en.wikipedia.org/wiki/Low_frequency_oscillation
https://en.wikipedia.org/wiki/Video_game_music
https://en.wikipedia.org/wiki/Class-D_amplifier
https://en.wikipedia.org/wiki/Class-D_amplifier
https://en.wikipedia.org/wiki/Loudspeaker
https://en.wikipedia.org/wiki/Servomotor
https://en.wikipedia.org/wiki/MRI
https://en.wikipedia.org/wiki/PCM
https://en.wikipedia.org/wiki/PC_speaker
https://en.wikipedia.org/wiki/Direct_Stream_Digital
https://en.wikipedia.org/wiki/Pulse_density_modulation
https://en.wikipedia.org/wiki/Pulse_density_modulation
https://en.wikipedia.org/wiki/Acoustics
https://en.wikipedia.org/wiki/Super_Audio_CD
https://en.wikipedia.org/wiki/FET
https://en.wikipedia.org/wiki/Delta-sigma_modulation
https://en.wikipedia.org/wiki/Pulse-amplitude_modulation
https://en.wikipedia.org/wiki/Pulse-code_modulation
https://en.wikipedia.org/wiki/Pulse-density_modulation
https://en.wikipedia.org/wiki/Pulse-position_modulation
https://en.wikipedia.org/wiki/Radio_control
https://en.wikipedia.org/wiki/Servomechanism#RC_servos
https://en.wikipedia.org/wiki/Sliding_mode_control

7.6. EXTERNAL LINKS 51

• Space vector modulation

• Class-D amplifier

7.5 References
[1] http://www.homepower.com/articles/

solar-electricity/design-installation/
sizing-grid-tied-pv-system-battery-backup

[2] Schönung, A.; Stemmler, H. (August 1964). “Geregel-
ter Drehstrom-Umkehrantrieb mit gesteuertemUmrichter
nach dem Unterschwingungsverfahren”. BBC Mitteilun-
gen (Brown Boveri et Cie) 51 (8/9): 555–577.

[3] www.netrino.com – Introduction to Pulse Width Modu-
lation (PWM)

[4] Fundamentals of HVAC Control Systems, by Robert Mc-
Dowall, p. 21

[5] Hausmair, Katharina; Shuli Chi; Peter Singerl; Chris-
tian Vogel (February 2013). “Aliasing-Free Digital Pulse-
Width Modulation for Burst-Mode RF Transmitters”.
IEEE Transactions on Circuits and Systems I: Regular Pa-
pers 60 (2): 415–427. doi:10.1109/TCSI.2012.2215776.

[6] J. Huang, K. Padmanabhan, and O. M. Collins, “The
sampling theorem with constant amplitude variable width
pulses”, IEEE transactions on Circuits and Systems, vol.
58, pp. 1178 - 1190, June 2011.

[7] Hirak Patangia, Sri Nikhil Gupta Gourisetti, “A Har-
monically Superior Modulator with Wide Baseband and
Real-Time Tunability”, IEEE International Symposium
on Electronic Design (ISED), India, Dec.11.

[8] Hirak Patangia, Sri Nikhil Gupta Gourisetti, “Real Time
Harmonic Elimination Using a Modified Carrier”, CONI-
ELECOMP, Mexico, Feb 2012.

[9] Hirak Patangia, Sri Nikhil Gupta Gourisetti, “A Novel
Strategy for Selective Harmonic Elimination Based on a
Sine-Sine PWMModel”, MWSCAS, U.S.A, Aug 2012.

7.6 External links
• An Introduction to Delta Sigma Converters

• Introductory Tutorial on PWM and Quadrature En-
coding

• Pulse Width Modulation using 555 Timer

• Pulse Width Modulation in PID control loop - free
simulator

https://en.wikipedia.org/wiki/Space_vector_modulation
https://en.wikipedia.org/wiki/Class-D_amplifier
http://www.homepower.com/articles/solar-electricity/design-installation/sizing-grid-tied-pv-system-battery-backup
http://www.homepower.com/articles/solar-electricity/design-installation/sizing-grid-tied-pv-system-battery-backup
http://www.homepower.com/articles/solar-electricity/design-installation/sizing-grid-tied-pv-system-battery-backup
http://www.netrino.com/Embedded-Systems/How-To/PWM-Pulse-Width-Modulation
http://www.netrino.com/Embedded-Systems/How-To/PWM-Pulse-Width-Modulation
http://books.google.com/books?id=UMk1EUp-W-UC&pg=PA21&dq=%22time+proportioning%22
https://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1109%2FTCSI.2012.2215776
http://www.beis.de/Elektronik/DeltaSigma/DeltaSigma.html
http://www.embedded.com.au/pages/Motor_Interface.html
http://www.mycircuits9.com/2013/04/pulse-width-modulation-pwm-555-timer-ic.html
http://www.pidlab.com/en/pwm-demo
http://www.pidlab.com/en/pwm-demo

52 CHAPTER 7. PULSE-WIDTH MODULATION

7.7 Text and image sources, contributors, and licenses

7.7.1 Text
• Freescale 68HC11 Source: http://en.wikipedia.org/wiki/Freescale_68HC11?oldid=628185196 Contributors: Stephen Gilbert, Ellmist,

Palnatoke, Stan Shebs, Wernher, Altenmann, PlatinumX, TobinFricke, 2fargon, James Foster, (aeropagitica), Wdfarmer, Brycen,
Woohookitty, Graham87, SLi, Mirror Vax, YurikBot, Sverre, LanguidMandala, Unyoyega, Chris the speller, Bluebot, TimBentley, Can't
sleep, clown will eat me, Cybercobra, Loadmaster, Dicklyon, Raidfibre, Pipatron, Tonymac32, Choppingmall, Calltech, RockMFR, Kyle
the bot, Sarenne, Andy Dingley, SieBot, Dbryant 94560, Lightmouse, Frappucino, Alexbot, Joel Saks, Tonypdmtr, Legobot, Luckas-bot,
Amirobot, Rfbb, Eumolpo, KuroiShiroi, Tomekdcd, GerbilSoft, Lumag Lumag, No1anyoneknows, Rocketrod1960, Iswantoumy, Rosso-
Malpelo, Kahtar and Anonymous: 35

• Intel 8085 Source: http://en.wikipedia.org/wiki/Intel_8085?oldid=624200412 Contributors: Khendon, Scipius, Mahjongg, Dave Farquhar,
Ixfd64, Stan Shebs, Berteun, Wernher, AnonMoos, Donarreiskoffer, Vespristiano, Adam Sampson, Mboverload, Kusunose, Sam Hocevar,
Moxfyre, Imroy, Roo72, Ttguy, Kghose, FyreFiend, Cmdrjameson, Polluks, Photonique, Hooperbloob, Jumbuck, Nazli, Guy Harris,
Ashley Pomeroy, Pravs, Wtshymanski, Jannex, Wdyoung, Tabletop, Alecv, Sattish, Quale, Commander, StuartBrady, FlaBot, Toresbe,
Dresdnhope, YurikBot, RobotE, Armistej, Yuhong, Rsrikanth05, Omniwriter, Lomn, Vlad, Uwezi, 2fort5r, Allens, KnightRider, Smack-
Bot, Unyoyega, Eskimbot, Gilliam, NCurse, Thumperward, Frap, Wine Guy, Morio, H3g3m0n, Ohconfucius, Dmit, Loadmaster, Beet-
stra, Nwwaew, Onkarshinde, Manurastogi, Saulo35, HenkeB, Future Perfect at Sunrise, Viscious81, Thijs!bot, TheJosh, Vodomar, Es-
carbot, Guy Macon, Jj137, Smartse, Rforums, Rossaxe, Iwick, RastaKins, Vibhav Chauhan, Magioladitis, Bongwarrior, Diego bf109,
PeterAStoll, Mustafa1702, Tracer9999, STBot, Kateshortforbob, J.delanoy, Useight, Jeff G., Linefeed, Silpsilp, WinTakeAll, Meters,
Adam.J.W.C., Jpeeling, Spinningspark, Wjl2, SieBot, Milnivri, Lightmouse, ClueBot, Rilak, MikeVitale, Sumanthsr25, Niceguyedc, Ku-
mar amit p, Jotterbot, DumZiBoT, Templarion, XLinkBot, Parallelized, Addbot, Mortense, JoshuaKuo, Fireaxe888, Lightbot, Matthew
Anthony Smith, Cleberz, LuK3, Luckas-bot, Yobot, Amirobot, Muthuramanece, Junaidpv, Freezykid, Materialscientist, Ilija139, Kel-
logg257, Qorilla, LilHelpa, NSK Nikolaos S. Karastathis, Djomla88, JWBE, Victor Waiman, Prari, Thorenn, Mail shan, ZenerV, Kwiki,
Arndbergmann, Karna079, John Elson, SpaceFlight89, Jm61288, DARTH SIDIOUS 2, Kbjayashankar, EmausBot, Dewritech, Ibbn, Re-
namedUser01302013, Cogiati, Bhanuvrat, A930913, Prerna maheshwari, Spnro, WIMIA, DASHBotAV, ClueBot NG, Matthiaspaul,
Newyorkadam, Helpful Pixie Bot, Wbm1058, Jphill19, Barewires, Ranjithfs1, Vanangamudiyan, Wiki13, Pdesousa359, Vikram.gurve,
Kokkkikumar, Morning Sunshine, Epicgenius, Pseudonymous Rex, Shreyaacharya1990, Comp.arch, Kahtar, Poepkop and Anonymous:
268

• Intel 8086 Source: http://en.wikipedia.org/wiki/Intel_8086?oldid=629311538 Contributors: MatthewWoodcraft, Vulture, Bryan Derksen,
StephenGilbert, Nate Silva,WilliamAvery, RTC,Michael Hardy, Cprompt, Mahjongg, Ixfd64, Egil, Ahoerstemeier, Andres, CimonAvaro,
Hpa, Furrykef, Grendelkhan, Saltine, Wernher, BenRG, Donarreiskoffer, Robbot, Yarvin, Rursus, Trevor Johns, Wereon, SamB, Mintleaf,
Levin, Ferkelparade, Brona, Fleminra, Neilc, Kevins, Bumm13, TheObtuseAngleOfDoom, Imroy, Slady, Discospinster, Rich Farmbrough,
Jpk, Smyth, Thomas Willerich, Ivan Bajlo, Martpol, Djordjes, Ht1848, CanisRufus, Jaques O. Carvalho, Trixter, Agoode, Yonghokim,
Shenme, Hooperbloob, Nkedel, Alansohn, Guy Harris, Arthena, Denniss, Wtshymanski, Kbolino, Thryduulf, Woohookitty, Mindmatrix,
Timharwoodx, Jeff3000, Damicatz, GregorB, Isnow, Alecv, Azkar, Graham87, Qwertyus, NeonMerlin, FlaBot, Quuxplusone, Swtpc6800,
Mathrick, Butros, Chobot, DVdm, YurikBot, Wavelength, Hairy Dude, Pigman, Yuhong, Thane, DragonHawk, Megapixie, Richardcavell,
Iambk, KGasso, Fourohfour, SmackBot, Jagged 85, Eaglizard, Brianski, LostArtilleryman, Amatulic, Keegan, Sandycx, Jerome Charles
Potts, Chisophugis, Idallen, Милан Јелисавчић, Frap, OrphanBot, Rrburke, Radagast83, Cybercobra, Shadow1,Morio, Vina-iwbot, Spare-
HeadOne, John, Natarajuab, Jeberle, Coredesat, Mahinthjoe, IronGargoyle, Loadmaster, Illythr, Camp3rstrik3r, DJMalone, Mdanh2002,
DabMachine, Fan-1967, Asmpgmr, Sul4bh, CmdrObot, Memetics, Van helsing, HenkeB, Emilio Juanatey, TimmyRaa, Thijs!bot, Al
Lemos, TheJosh, AntiVandalBot, Seaphoto, Uvaphdman, Edokter, MECU, Alphachimpbot, DOSGuy, Nthep, Bongwarrior, VoABot II,
PeterAStoll, JaGa, GermanX, Gwern, Ginsengbomb, Aryoc, Jerry, MJStadler, Belovedfreak, Potatoswatter, Useight, DanielVerkamp,
Imperator3733, PGSONIC, Kww, TheThiefMaster, Hqb, Sarenne, Nxavar, LiveOnAPlane, WinTakeAll, Lerdthenerd, Andy Dingley,
Adam.J.W.C., Mpx, Fnagaton, Sonicology, Aesthetic.online, WereSpielChequers, Raffzahn, Lightmouse, Dust Filter, Treekids, ClueBot,
Lonegroover, MikeVitale, Niceguyedc, TheSmuel, The 888th Avatar, Auntof6, Pointillist, Microprofessor, Excirial, Jotterbot, 8400sx,
Callmejosh, Aitias, SoxBot III, Galzigler, PL290, Farmdogg, Thebestofall007, Addbot, Yousou, Dk pdx, Magus732, Saurabh desire, De-
bresser, AtheWeatherman, Tide rolls, Matthew Anthony Smith, Matt.T, Yobot, Bunnyhop11, Legobot II, Crispmuncher, AnomieBOT,
RandomAct, Materialscientist, Atw1996, Лъчезар, Xqbot, JWBE, GrouchoBot, Iceman444k, IShadowed, Shadowjams, Endothermic,
FrescoBot, ZenerV, Arndbergmann, Hoo man, Praveen.giluka, Alex146, FoxBot, Seahorseruler, Ybungalobill, Jfmantis, RjwilmsiBot,
WinContro, EmausBot, Immunize, Ibbn, ZéroBot, Resh123, H3llBot, L Kensington, Avivanov76, Wallentis, Kevin J Chase, Kevindass,
Mikhail Ryazanov, ClueBot NG, Naren2010, Matthiaspaul, CocuBot, Snotbot, DieSwartzPunkt, Helpful Pixie Bot, Wbm1058, Jphill19,
Pdesousa359, Andrzej w k 2, Digital Brains, FootholdTechnology, ZaferXYZ, Rob491, Kahtar, Bert Freudenberg, Sofia Koutsouveli,
Tshubham and Anonymous: 332

• Intel MCS-51 Source: http://en.wikipedia.org/wiki/Intel_MCS-51?oldid=627801615 Contributors: Ellmist, Stan Shebs, Ronz, GRA-
HAMUK, Arteitle, Emperorbma, Wernher, Robbot, Tobias Bergemann, Roger Irwin, DavidCary, Wmahan, Chowbok, Sam Hocevar, Flex,
Ljosa, Nabla, CanisRufus, Simon South, R. S. Shaw, Minghong, Alansohn, Corwin8, Wtshymanski, Cburnett, Kgrr, Isnow, MarkusHagen-
locher, Rjwilmsi, Miha Ulanov, Wragge, Mirror Vax, Bgwhite, YurikBot, Matanya (renamed), Armistej, DragonHawk, Dhollm, David
Biddulph, RunOrDie, Veinor, SmackBot, John Lunney, Nihonjoe, Maelwys, Rhondle, CSWarren, Chlewbot, OrphanBot, Nishkid64,
Rait, Dicklyon, Riordanmr, Pfagerburg, Kimjoarr, ShelfSkewed, HenkeB, Shreyasjoshis, Wsmarz, Solidpoint, Thijs!bot, Racaille, Elec-
tron9, Modal, MichaelFrey, Guy Macon, Bobke, Makkwong, Rushikeshshinde, JAnDbot, RastaKins, Ljudina, JamesBWatson, Chopping-
mall, Mustafa1702, Sajupa, Calltech, Gwern, STBotD, Enivid, VolkovBot, Flyte35, Someguy1221, MauriceS, Don4of4, LeaveSleaves,
SQL, Thunderbird2, Abhi3385, VVVBot, Jerryobject, Antzervos, Lightmouse, Nyelvmark, Frappucino, Ken123BOT, Tuxa, Niceguyedc,
Pointillist, Plaes, Muro Bot, Amolhshah, Joel Saks, XLinkBot, Flipmode fly, Asaco, Addbot, Rogue780, Mortense, CactusWriter, MrOllie,
Lightbot, Yobot, Crispmuncher, Raj591, AnomieBOT, Kushagraalankar, Citation bot, ArthurBot, MauritsBot, Xqbot, TheAMmollusc,
Capricorn42, Armstrong1113149, JWBE, Victor Waiman, Edsim51, Aaditya 7, FrescoBot, Oldlaptop321, Plindemann, Glider87, Out-
back the koala, Tomekdcd, RedBot, MaxDel, Mohitjoshi999, Songsing77, Sarojlucky, Dead Horsey, Dewritech, AndroidX1, Dcirovic,
Ebrambot, Kevjonesin, Sbmeirow, Spacetrucker23, Lazar.Elena, ClueBot NG, Kasirbot, Widr, Helpful Pixie Bot, Microheat, DBigXray,
Tailor-tinker, Dzlinker, Srinathkr3, Flutte, Ndzervas, Fugmarsh, Tagremover, Surjansh, Dexbot, Ambiguous Furry Rocking Thing, Frosty,
Justme8910, Nvtj, Comp.arch, Kahtar, Monkbot and Anonymous: 202

• Motorola 6800 Source: http://en.wikipedia.org/wiki/Motorola_6800?oldid=628253470 Contributors: Stephen Gilbert, Maury Markowitz,
Ellmist, Gregben, Mahjongg, Egil, Stan Shebs, Ww, Furrykef, Wernher, FlyByPC, Archivist, Korath, Merovingian, Mdrejhon, Leonard

http://en.wikipedia.org/wiki/Freescale_68HC11?oldid=628185196
http://en.wikipedia.org/wiki/Intel_8085?oldid=624200412
http://en.wikipedia.org/wiki/Intel_8086?oldid=629311538
http://en.wikipedia.org/wiki/Intel_MCS-51?oldid=627801615
http://en.wikipedia.org/wiki/Motorola_6800?oldid=628253470

7.7. TEXT AND IMAGE SOURCES, CONTRIBUTORS, AND LICENSES 53

G., Revth, Tooki, Hugh Mason, Wrp103, Pixel8, Moki80, Bender235, Jonathan Drain, Foobaz, Hooperbloob, WideArc, Sverde1, Wtshy-
manski, Suruena, Morkork, TreveX, Alecv, Marudubshinki, Graham87, Miq, Rjwilmsi, Pbnelson, FlaBot, Swtpc6800, Viznut, Yurik-
Bot, Armistej, Art Navsegda, Gaius Cornelius, JulesH, Pelladon, LanguidMandala, Cojoco, SmackBot, Chris the speller, McNeight,
Милан Јелисавчић, RCX, Loadmaster, Eurodog, Oswald Glinkmeyer, Dicklyon, GhostInTheMachine, Simonmcc, TJ Spyke, Iridescent,
HenkeB, Myasuda, Orion Blastar, Aldis90, Al Lemos, Electron9, Humble Scribe, Tedickey, Daibot, R'n'B, Nono64, Jhallenworld, STBotD,
ChrisWar666, Urbancamo, Billinghurst, Andy Dingley, Plan10, Phe-bot, Jerryobject, Lightmouse, Renan S2, ClueBot, Rilak, Briangjob,
Lambtron, Addbot, DOI bot, Magus732, Tothwolf, Leszek Jańczuk, Lightbot, Luckas-bot, KamikazeBot, AnomieBOT, Aneah, Lucien-
BOT, Ballon845, Citation bot 1, Orenburg1, EmausBot, WikitanvirBot, AsceticRose, Floydvirginia, SeattleMurki, Helpful Pixie Bot,
ChrisGualtieri, ,ל Khazar2, Comp.arch, Monkbot and Anonymous: 68

• PIC microcontroller Source: http://en.wikipedia.org/wiki/PIC_microcontroller?oldid=627181377 Contributors: Maury Markowitz,
Azhyd, Heron, Frecklefoot, Michael Hardy, Mahjongg, Ahoerstemeier, Stan Shebs, Mac, Ronz, Glenn, Wik, Zoicon5, Furrykef, Mor-
wen, Val42, Omegatron, Wernher, Izx, Kizor, RedWolf, Chris Roy, Jrash, Brouhaha, DavidCary, Mat-C, Mintleaf, Ds13, Mboverload,
Ferdinand Pienaar, Bo102010, Dan Gardner, Uzume, Cashimor, Chowbok, Hellisp, BrianWilloughby, Abdull, Moxfyre, Monkeyman,
Imroy, Rich Farmbrough, Alistair1978, ChrisJ, Plugwash, CanisRufus, Adambro, Bobo192, Jfraser, Zetawoof, JesseHogan, Jason One,
Alansohn, Redfarmer, Wdfarmer, Velella, Wtshymanski, Tony Sidaway, Dirac1933, Gene Nygaard, Talkie tim, Kinema, Mr z, Nuno
Tavares, Firsfron, Tabletop, Stingraze, Gengiskanhg, Alecv, Toussaint, Marudubshinki, Liqk, Rjwilmsi, .digamma, Atomsmith, Avochelm,
Vary, MZMcBride, Brighterorange, Toddsoc, FlaBot, Pip11, Intersofia, Alvin-cs, Thunderchild, Chobot, DVdm, Bgwhite, Gwernol, Yurik-
Bot, Wavelength, Pip2andahalf, Adam1213, RussBot, SpuriousQ, Gaius Cornelius, Ihope127, Wiki alf, Dogcow, Speedevil, Voidxor,
Ma3nocum, Niggurath, Erpingham, Zzuuzz, Morcheeba, Mateo LeFou, Mikemurphy, GraemeL, Allens, Tom Morris, Attilios, Smack-
Bot, Brammers, KnowledgeOfSelf, Bmearns, Jonathanwagner, Gilliam, Smt52, Chris the speller, Tree Biting Conspiracy, Peter todd,
DHN-bot, Colonies Chris, A. B., Bsodmike, Frap, Hyvatti, JonHarder, Weopgon, Megamix, TechPurism, Dcamp314, Vic93, Bejnar,
Nishkid64, ArglebargleIV, Kuru, Turbo852, RCX, CyrilB, Mr Stephen, Eplondke, Dicklyon, Warnockm, Mdenton, Lmblackjack21, Joe-
Bot, Trialsanderrors, Angelpeream, CmdrObot, PSL, Shoez, Jburstein, HenkeB, Cydebot, Scalerobotics, Stjrna, Nabokov, Plaasjaapie,
Hithisishal, Thijs!bot, Bradediger, Electron9, James086, X201, FourBlades, AntiVandalBot, MichaelFrey, Saimhe, Guy Macon, Alex-
OvShaolin, Gadlen, MortimerCat, JAnDbot, Gcm, Barek, Karlwk, BrotherE, Jahoe, Magioladitis, VoABot II, Ferritecore, Chopping-
mall, 28421u2232nfenfcenc, Allstarecho, Japo, Matt B., GermanX, Calltech, Gwern, PJohnson, Rettetast, Kateshortforbob, Commons-
Delinker, Sbogdanov, Ckielstra, Skeeter2, NightFalcon90909, Javawizard, Reedy Bot, Rod57, Katalaveno, Jhallenworld, Plasticup, Ppa-
padeas, SJP, Cometstyles, S.riccardelli, WardXmodem, Reelrt, CSumit, Soliloquial, Philip Trueman, EvanCarroll, Una Smith, CanOf-
Worms, Gfutia, Fabero74, Lerdthenerd, Andy Dingley, Ramsey585, Dirkbb, DavesPlanet, Nat1192, Jd4x4, Insanity Incarnate, Sxpi-
lot250, SieBot, SheepNotGoats, VVVBot, OpBanana, Hawk777, Pcbbc, Jerryobject, Taemyr, Randomblue, Smishek, Bombadier337,
Ikmac, ClueBot, LizardJr8, Shjacks45, Sv1xv, Excirial, Davitenio, Jamodio, Devon Sean McCullough, XLinkBot, MohammadEbrahim,
NobbiP, Addbot, Mortense, Kevin E Hawkins, TutterMouse, Johnpeterharvey, MrOllie, SamatBot, Tide rolls, Lightbot, CountryBot, Softy,
Margin1522, Lrb13615, Washburnmav, Tempodivalse, AnomieBOT, Wjw1961, Materialscientist, Akilaa, Xqbot, Fransschreuder, Wiki-
wooroo, Browsem, DimychUA, Carveone, Knuckx, Kyxui, Shadowjams, Fixentries, Samwb123, FrescoBot, Miceduan, Goldzen, Outback
the koala, Jon-ecm, Lraingele, A little insignificant, Velociostrich, PPA94, Eworldprojects, 10metreh, Strigoides, DiamondDevil, Yunshui,
Fiducial, Lauri.pirttiaho, EmausBot, Heracles31, Bernard Teo, RenamedUser01302013, Betatester228, Jwortzel, Sbmeirow,MatthewJBen-
nett, Greglecuyer, Bugfarmer, WimHeirman, Pazza pazza, ClueBot NG, Jaanus.kalde, Aleksandarbrain, Satellizer, Kubing, Matthewmad-
mad, Danim, Danara5, Gauravsangwan, BG19bot, Barefoottech, Cyanoir, LordSputnik, Dhx1, ZaferXYZ, Alexdzm90, Electracion, Ono-
rai, Jonny wdrw, Comp.arch, Jianhui67, CyanRuby, Div2005, Monkbot and Anonymous: 522

• Pulse-widthmodulation Source: http://en.wikipedia.org/wiki/Pulse-width_modulation?oldid=628618587 Contributors: Damian Yerrick,
PierreAbbat, SimonP, Heron, Lumpbucket, Michael Hardy, Tim Starling, Ixfd64, Glenn, GRAHAMUK, Selket, EpiVictor, Pingveno,
Giftlite, DavidCary, BenFrantzDale, Everyking, Starx, Mschlindwein, Sonett72, TedPavlic, Jaberwocky6669, Adambro, Bobo192, Meesta-
plu, Hooperbloob, RJFJR, DV8 2XL, Kenyon, SCEhardt, RuM, Ademkader, Alll, Dermeister, Fish and karate, Ian Pitchford, Gurch,
Krishnavedala, YurikBot, Toffile, Rohitbd, Deville, KnightRider, SmackBot, Sam8, Chris the speller, Nbarth, SundarBot, Nahum Re-
duta, Funky Monkey, S Roper, Johncatsoulis, Gobonobo, Ckatz, CyrilB, Dicklyon, Spook`, Politepunk, Wizard191, Twas Now, Cap-
italR, Nit vs atwiki, Porterjoh, Jaeger5432, Chrike, Circuit dreamer, Zureks, WeggeBot, Cydebot, MC10, Rsutherland, Nick Wilson,
Simon Brady, Thijs!bot, Gerry Ashton, Vibhutesh, Xoneca, Magioladitis, Rivertorch, Nikevich, ML1986, Matt B., Glrx, JKN abb, R'n'B,
Candleknight, GandalfDaGraay, Jeepday, Leopold Stotch, Broadbot, Andy Dingley, Spinningspark, AlleborgoBot, Deconstructhis, Yn-
gvarr, SieBot, Allmightyduck, EnOreg, Denisarona, Asher196, ClueBot, DragonBot, Arjayay, SchreiberBike, Lambtron, DumZiBoT,
Joel Saks, XLinkBot, Teslaton, MystBot, Addbot, Mortense, Tide rolls, OlEnglish, Legobot, Luckas-bot, Yobot, Mikey likes mountains,
AnomieBOT, Zangar, RandomAct, Xzapro4, GB fan, ArthurBot, Xqbot, DSisyphBot, Shulini, Shfork, Omnipaedista, RibotBOT, Doost-
darWKP, I dream of horses, Phoenix7777, TobeBot, DARTH SIDIOUS 2, DexDor, EmausBot, DMChatterton, Wikipelli, ZéroBot, Fæ,
Squall line, Tolly4bolly, Mayflowerone, Yves86, Puffin, Sven Manguard, ClueBot NG, Matthiaspaul, Satellizer, Kubing, PoqVaUSA, Snot-
bot, Willardmcg, Widr, BG19bot, Ninney, Tungstic, BattyBot, Hebert Peró, Mrt3366, GoShow, ُمساهم ,عبدالرحمن Ajv39, MadCowpoke,
AK456, Liangjingjin, SFK2, Sihuapilapa, Buntybhai, Hello371882, Satwikmishravit, Megapod, Monkbot and Anonymous: 216

7.7.2 Images
• File:Commons-logo.svg Source: http://upload.wikimedia.org/wikipedia/en/4/4a/Commons-logo.svg License: ? Contributors: ? Original
artist: ?

• File:Delta_PWM.svg Source: http://upload.wikimedia.org/wikipedia/commons/d/dc/Delta_PWM.svg License: CC-BY-SA-3.0 Contrib-
utors:

• Delta_PWM.png Original artist: Delta_PWM.png: Cyril BUTTAY
• File:Duty_cycle_general.svg Source: http://upload.wikimedia.org/wikipedia/commons/6/68/Duty_cycle_general.svg License: CC-BY-

SA-3.0 Contributors:
• Duty_cycle_general.png Original artist: Duty_cycle_general.png: Cyril BUTTAY
• File:INTEL8031AH.png Source: http://upload.wikimedia.org/wikipedia/commons/a/af/INTEL8031AH.png License: CC-BY-SA-3.0
Contributors: Own work Original artist: Rhondle

• File:Intel_8051_arch.svg Source: http://upload.wikimedia.org/wikipedia/commons/c/cd/Intel_8051_arch.svg License: CC-BY-SA-3.0
Contributors: Own work Original artist: Appaloosa

http://en.wikipedia.org/wiki/PIC_microcontroller?oldid=627181377
http://en.wikipedia.org/wiki/Pulse-width_modulation?oldid=628618587
http://upload.wikimedia.org/wikipedia/en/4/4a/Commons-logo.svg
http://upload.wikimedia.org/wikipedia/commons/d/dc/Delta_PWM.svg
https://commons.wikimedia.org/wiki/File:Delta_PWM.png
https://commons.wikimedia.org/wiki/File:Delta_PWM.png
http://upload.wikimedia.org/wikipedia/commons/6/68/Duty_cycle_general.svg
https://commons.wikimedia.org/wiki/File:Duty_cycle_general.png
https://commons.wikimedia.org/wiki/File:Duty_cycle_general.png
http://upload.wikimedia.org/wikipedia/commons/a/af/INTEL8031AH.png
https://commons.wikimedia.org/w/index.php?title=User:Rhondle&action=edit&redlink=1
http://upload.wikimedia.org/wikipedia/commons/c/cd/Intel_8051_arch.svg
https://commons.wikimedia.org/wiki/User:Appaloosa

54 CHAPTER 7. PULSE-WIDTH MODULATION

• File:Intel_8085A_Die_CPU_Image.jpg Source: http://upload.wikimedia.org/wikipedia/commons/6/6c/Intel_8085A_Die_CPU_
Image.jpg License: CC-BY-SA-3.0 Contributors: I took the picture with my own camera
Previously published: none Original artist: Pdesousa359

• File:Intel_8085_arch.svg Source: http://upload.wikimedia.org/wikipedia/commons/b/bb/Intel_8085_arch.svg License: CC-BY-SA-3.0
Contributors: Own work Original artist: Appaloosa

• File:Intel_8086_CPU_Die.JPG Source: http://upload.wikimedia.org/wikipedia/commons/a/a8/Intel_8086_CPU_Die.JPG License: CC-
BY-SA-3.0 Contributors: Own work Original artist: Pdesousa359

• File:Intel_8086_block_scheme.svg Source: http://upload.wikimedia.org/wikipedia/commons/f/f7/Intel_8086_block_scheme.svg Li-
cense: CC-BY-SA-3.0 Contributors: Własne opracowanie na podstawie różnych źródeł Original artist: Harkonnen2

• File:KL_Intel_P8051.jpg Source: http://upload.wikimedia.org/wikipedia/commons/f/f0/KL_Intel_P8051.jpg License: CC-BY-SA-3.0
Contributors: CPU collection Konstantin Lanzet Original artist: Konstantin Lanzet (with permission)

• File:KL_Motorola_68HC11.jpg Source: http://upload.wikimedia.org/wikipedia/commons/0/02/KL_Motorola_68HC11.jpg License:
CC-BY-3.0 Contributors: CPU collection Original artist: Konstantin Lanzet

• File:KL_USSR_KP1810BM86.jpg Source: http://upload.wikimedia.org/wikipedia/commons/d/d2/KL_USSR_KP1810BM86.jpg Li-
cense: GFDL Contributors: CPU collection Konstantin Lanzet.
Picture taken with Canon EOS 400D. Original artist: Konstantin Lanzet

• File:M6800_Family_Block_Diagram.png Source: http://upload.wikimedia.org/wikipedia/commons/5/57/M6800_Family_Block_
Diagram.png License: Public domain Contributors: self Original artist: Swtpc6800 en:User:Swtpc6800 Michael Holley

• File:MC6800_Processor_Diagram.png Source: http://upload.wikimedia.org/wikipedia/commons/1/1b/MC6800_Processor_Diagram.
png License: Public domain Contributors: self Original artist: Swtpc6800 en:User:Swtpc6800 Michael Holley

• File:MC68HC11_microcontroller.jpg Source: http://upload.wikimedia.org/wikipedia/commons/b/b5/MC68HC11_microcontroller.
jpg License: CC-BY-SA-3.0 Contributors: ? Original artist: ?

• File:MOS_6501_Ad_August_1975.jpg Source: http://upload.wikimedia.org/wikipedia/commons/1/1d/MOS_6501_Ad_August_1975.
jpg License: Public domain Contributors: Scanned from August 7, 1975 issue of Electronics by Michael Holley Swtpc6800 Original artist:
MOS Technology. Advertising agency: Henry S. Goodsett Advertising

• File:Microchip_PIC24HJ32GP202.jpg Source: http://upload.wikimedia.org/wikipedia/commons/2/26/Microchip_PIC24HJ32GP202.
jpg License: CC-BY-SA-3.0-2.5-2.0-1.0 Contributors: Self-taken Original artist: w:User:Acdx

• File:Motorola_M6800_manuals.jpg Source: http://upload.wikimedia.org/wikipedia/commons/d/de/Motorola_M6800_manuals.jpg Li-
cense: Public domain Contributors: Own work Original artist: Swtpc6800 en:User:Swtpc6800 Michael Holley

• File:Motorola_M6800_microcomputer_ad_April_1975.jpg Source: http://upload.wikimedia.org/wikipedia/commons/8/82/
Motorola_M6800_microcomputer_ad_April_1975.jpg License: Public domain Contributors: Scanned from pages 42 and 43 of the April
17, 1975 issue of Electronics magazine by Michael Holley Swtpc6800 Original artist: Motorola Semiconductor Products Inc. Advertising
agency, E.B. Lane and Associates. Both located in Phoenix Arizona.

• File:Motorola_MC6800_microprocessor.jpg Source: http://upload.wikimedia.org/wikipedia/commons/5/5a/Motorola_MC6800_
microprocessor.jpg License: Public domain Contributors: Own work Original artist: Swtpc6800 en:User:Swtpc6800 Michael Holley

• File:Motorola_MC6820L_MC6821L.jpg Source: http://upload.wikimedia.org/wikipedia/commons/3/33/Motorola_MC6820L_
MC6821L.jpg License: Public domain Contributors: Own work Original artist: Swtpc6800 en:User:Swtpc6800 Michael Holley

• File:Motorola_Transistor_Radio_1960.jpg Source: http://upload.wikimedia.org/wikipedia/commons/c/cf/Motorola_Transistor_
Radio_1960.jpg License: Public domain Contributors: Scanned from the May 23, 1960 issue of Life magazine by Michael Holley
Swtpc6800 . Original artist: Motorola

• File:Oki_80c86a.jpg Source: http://upload.wikimedia.org/wikipedia/commons/9/97/Oki_80c86a.jpg License: Public domain Contribu-
tors: Own work Original artist: Alecv

• File:PIC12C508-HD.jpg Source: http://upload.wikimedia.org/wikipedia/commons/d/d0/PIC12C508-HD.jpg License: CC-BY-3.0 Con-
tributors: http://zeptobars.ru/en/read/open-microchip-asic-what-inside-II-msp430-pic-z80 Original artist: ZeptoBars

• File:PIC16C505-HD.jpg Source: http://upload.wikimedia.org/wikipedia/commons/f/fc/PIC16C505-HD.jpg License: CC-BY-3.0 Con-
tributors: http://zeptobars.ru/en/read/open-microchip-asic-what-inside-II-msp430-pic-z80 Original artist: ZeptoBars

• File:PIC16CxxxWIN.JPG Source: http://upload.wikimedia.org/wikipedia/commons/f/f8/PIC16CxxxWIN.JPG License: CC-BY-2.5
Contributors: ? Original artist: ?

• File:PIC_microcontrollers.jpg Source: http://upload.wikimedia.org/wikipedia/commons/4/4c/PIC_microcontrollers.jpg License: Pub-
lic domain Contributors: Photo taken by uploader Original artist: MikeMurphy

• File:PWM,_3-level.svg Source: http://upload.wikimedia.org/wikipedia/commons/8/8e/PWM%2C_3-level.svg License: CC-BY-SA-3.0
Contributors: Own work Original artist: Zureks

• File:Pwm.svg Source: http://upload.wikimedia.org/wikipedia/commons/7/72/Pwm.svg License: CC-BY-SA-3.0 Contributors:
• Pwm.png Original artist: Pwm.png: CyrilB
• File:Question_book-new.svg Source: http://upload.wikimedia.org/wikipedia/en/9/99/Question_book-new.svg License: ? Contributors:

Created from scratch in Adobe Illustrator. Based on Image:Question book.png created by User:Equazcion Original artist:
Tkgd2007

• File:SAB-C515-LN.jpg Source: http://upload.wikimedia.org/wikipedia/commons/9/9f/SAB-C515-LN.jpg License: CC-BY-2.5 Con-
tributors: Own work Original artist: MichaelFrey

• File:SWTPC6800_open.jpg Source: http://upload.wikimedia.org/wikipedia/commons/b/be/SWTPC6800_open.jpg License: Public do-
main Contributors: Own work Original artist: Swtpc6800 en:User:Swtpc6800 Michael Holley

http://upload.wikimedia.org/wikipedia/commons/6/6c/Intel_8085A_Die_CPU_Image.jpg
http://upload.wikimedia.org/wikipedia/commons/6/6c/Intel_8085A_Die_CPU_Image.jpg
https://commons.wikimedia.org/w/index.php?title=User:Pdesousa359&action=edit&redlink=1
http://upload.wikimedia.org/wikipedia/commons/b/bb/Intel_8085_arch.svg
https://commons.wikimedia.org/wiki/User:Appaloosa
http://upload.wikimedia.org/wikipedia/commons/a/a8/Intel_8086_CPU_Die.JPG
https://commons.wikimedia.org/w/index.php?title=User:Pdesousa359&action=edit&redlink=1
http://upload.wikimedia.org/wikipedia/commons/f/f7/Intel_8086_block_scheme.svg
https://commons.wikimedia.org/w/index.php?title=User:Harkonnen2&action=edit&redlink=1
http://upload.wikimedia.org/wikipedia/commons/f/f0/KL_Intel_P8051.jpg
http://upload.wikimedia.org/wikipedia/commons/0/02/KL_Motorola_68HC11.jpg
http://upload.wikimedia.org/wikipedia/commons/d/d2/KL_USSR_KP1810BM86.jpg
http://upload.wikimedia.org/wikipedia/commons/5/57/M6800_Family_Block_Diagram.png
http://upload.wikimedia.org/wikipedia/commons/5/57/M6800_Family_Block_Diagram.png
https://commons.wikimedia.org/wiki/User:Swtpc6800
https://en.wikipedia.org/wiki/User:Swtpc6800
http://upload.wikimedia.org/wikipedia/commons/1/1b/MC6800_Processor_Diagram.png
http://upload.wikimedia.org/wikipedia/commons/1/1b/MC6800_Processor_Diagram.png
https://commons.wikimedia.org/wiki/User:Swtpc6800
https://en.wikipedia.org/wiki/User:Swtpc6800
http://upload.wikimedia.org/wikipedia/commons/b/b5/MC68HC11_microcontroller.jpg
http://upload.wikimedia.org/wikipedia/commons/b/b5/MC68HC11_microcontroller.jpg
http://upload.wikimedia.org/wikipedia/commons/1/1d/MOS_6501_Ad_August_1975.jpg
http://upload.wikimedia.org/wikipedia/commons/1/1d/MOS_6501_Ad_August_1975.jpg
https://commons.wikimedia.org/wiki/User:Swtpc6800
http://upload.wikimedia.org/wikipedia/commons/2/26/Microchip_PIC24HJ32GP202.jpg
http://upload.wikimedia.org/wikipedia/commons/2/26/Microchip_PIC24HJ32GP202.jpg
https://en.wikipedia.org/wiki/User:Acdx
http://upload.wikimedia.org/wikipedia/commons/d/de/Motorola_M6800_manuals.jpg
https://commons.wikimedia.org/wiki/User:Swtpc6800
https://en.wikipedia.org/wiki/User:Swtpc6800
http://upload.wikimedia.org/wikipedia/commons/8/82/Motorola_M6800_microcomputer_ad_April_1975.jpg
http://upload.wikimedia.org/wikipedia/commons/8/82/Motorola_M6800_microcomputer_ad_April_1975.jpg
https://commons.wikimedia.org/wiki/User:Swtpc6800
http://upload.wikimedia.org/wikipedia/commons/5/5a/Motorola_MC6800_microprocessor.jpg
http://upload.wikimedia.org/wikipedia/commons/5/5a/Motorola_MC6800_microprocessor.jpg
https://commons.wikimedia.org/wiki/User:Swtpc6800
https://en.wikipedia.org/wiki/User:Swtpc6800
http://upload.wikimedia.org/wikipedia/commons/3/33/Motorola_MC6820L_MC6821L.jpg
http://upload.wikimedia.org/wikipedia/commons/3/33/Motorola_MC6820L_MC6821L.jpg
https://commons.wikimedia.org/wiki/User:Swtpc6800
https://en.wikipedia.org/wiki/User:Swtpc6800
http://upload.wikimedia.org/wikipedia/commons/c/cf/Motorola_Transistor_Radio_1960.jpg
http://upload.wikimedia.org/wikipedia/commons/c/cf/Motorola_Transistor_Radio_1960.jpg
https://commons.wikimedia.org/wiki/User:Swtpc6800
http://upload.wikimedia.org/wikipedia/commons/9/97/Oki_80c86a.jpg
https://commons.wikimedia.org/w/index.php?title=User:Alecv&action=edit&redlink=1
http://upload.wikimedia.org/wikipedia/commons/d/d0/PIC12C508-HD.jpg
http://zeptobars.ru/en/read/open-microchip-asic-what-inside-II-msp430-pic-z80
http://upload.wikimedia.org/wikipedia/commons/f/fc/PIC16C505-HD.jpg
http://zeptobars.ru/en/read/open-microchip-asic-what-inside-II-msp430-pic-z80
http://upload.wikimedia.org/wikipedia/commons/f/f8/PIC16CxxxWIN.JPG
http://upload.wikimedia.org/wikipedia/commons/4/4c/PIC_microcontrollers.jpg
http://upload.wikimedia.org/wikipedia/commons/8/8e/PWM%2C_3-level.svg
https://commons.wikimedia.org/wiki/User:Zureks
http://upload.wikimedia.org/wikipedia/commons/7/72/Pwm.svg
https://commons.wikimedia.org/wiki/File:Pwm.png
https://commons.wikimedia.org/wiki/File:Pwm.png
https://commons.wikimedia.org/wiki/User:CyrilB
http://upload.wikimedia.org/wikipedia/en/9/99/Question_book-new.svg
https://en.wikipedia.org/wiki/File:Question_book.png
https://en.wikipedia.org/wiki/User:Equazcion
https://en.wikipedia.org/wiki/User:Tkgd2007
http://upload.wikimedia.org/wikipedia/commons/9/9f/SAB-C515-LN.jpg
https://commons.wikimedia.org/wiki/User:MichaelFrey
http://upload.wikimedia.org/wikipedia/commons/b/be/SWTPC6800_open.jpg
https://commons.wikimedia.org/wiki/User:Swtpc6800
https://en.wikipedia.org/wiki/User:Swtpc6800

7.7. TEXT AND IMAGE SOURCES, CONTRIBUTORS, AND LICENSES 55

• File:Sigma-delta_PWM.svg Source: http://upload.wikimedia.org/wikipedia/commons/5/53/Sigma-delta_PWM.svg License: CC-BY-
SA-3.0 Contributors:

• Sigma_delta.png Original artist: Sigma_delta.png: Cyril BUTTAY
• File:Silicon_wafer.jpg Source: http://upload.wikimedia.org/wikipedia/commons/e/e2/Silicon_wafer.jpg License: Public domain Con-
tributors: Own work Original artist: Inductiveload

• File:Tektronix_4051_ad_April_1976.jpg Source: http://upload.wikimedia.org/wikipedia/commons/c/c2/Tektronix_4051_ad_April_
1976.jpg License: Public domain Contributors: Scanned from page 189 of the April 15, 1976 issue of Electronics magazine by Michael
Holley Swtpc6800 Original artist: Tektronix

• File:Text_document_with_red_question_mark.svg Source: http://upload.wikimedia.org/wikipedia/commons/a/a4/Text_document_
with_red_question_mark.svg License: Public domain Contributors: Created by bdesham with Inkscape; based upon Text-x-generic.svg
from the Tango project. Original artist: Benjamin D. Esham (bdesham)

• File:Three_PWM_types.svg Source: http://upload.wikimedia.org/wikipedia/commons/0/06/Three_PWM_types.svg License: CC-BY-
SA-3.0 Contributors:

• Three_types.png Original artist: Three_types.png: Cyril BUTTAY
• File:UPD8086D-2_NEC_1984year_19week_JAPAN.JPG Source: http://upload.wikimedia.org/wikipedia/commons/a/a0/

UPD8086D-2_NEC_1984year_19week_JAPAN.JPG License: CC-BY-SA-4.0 Contributors: Own work Original artist: Andrzej w
k 2

• File:Wiki_letter_w_cropped.svg Source: http://upload.wikimedia.org/wikipedia/commons/1/1c/Wiki_letter_w_cropped.svg License:
CC-BY-SA-3.0 Contributors:

• Wiki_letter_w.svg Original artist: Wiki_letter_w.svg: Jarkko Piiroinen
• File:Wikibooks-logo-en-noslogan.svg Source: http://upload.wikimedia.org/wikipedia/commons/d/df/Wikibooks-logo-en-noslogan.

svg License: CC-BY-SA-3.0 Contributors: Own work Original artist: User:Bastique, User:Ramac et al.
• File:Wyprowadzenie_mikroprocesora_8086.JPG Source: http://upload.wikimedia.org/wikipedia/commons/8/81/Wyprowadzenie_

mikroprocesora_8086.JPG License: Public domain Contributors: Dokumentacja mikroprocesora Intel 8086 Original artist: Unknown

7.7.3 Content license
• Creative Commons Attribution-Share Alike 3.0

http://upload.wikimedia.org/wikipedia/commons/5/53/Sigma-delta_PWM.svg
https://commons.wikimedia.org/wiki/File:Sigma_delta.png
https://commons.wikimedia.org/wiki/File:Sigma_delta.png
http://upload.wikimedia.org/wikipedia/commons/e/e2/Silicon_wafer.jpg
https://commons.wikimedia.org/wiki/User:Inductiveload
http://upload.wikimedia.org/wikipedia/commons/c/c2/Tektronix_4051_ad_April_1976.jpg
http://upload.wikimedia.org/wikipedia/commons/c/c2/Tektronix_4051_ad_April_1976.jpg
https://commons.wikimedia.org/wiki/User:Swtpc6800
http://upload.wikimedia.org/wikipedia/commons/a/a4/Text_document_with_red_question_mark.svg
http://upload.wikimedia.org/wikipedia/commons/a/a4/Text_document_with_red_question_mark.svg
https://commons.wikimedia.org/wiki/User:Bdesham
https://commons.wikimedia.org/wiki/File:Text-x-generic.svg
https://commons.wikimedia.org/wiki/User:Bdesham
http://upload.wikimedia.org/wikipedia/commons/0/06/Three_PWM_types.svg
https://commons.wikimedia.org/wiki/File:Three_types.png
https://commons.wikimedia.org/wiki/File:Three_types.png
http://upload.wikimedia.org/wikipedia/commons/a/a0/UPD8086D-2_NEC_1984year_19week_JAPAN.JPG
http://upload.wikimedia.org/wikipedia/commons/a/a0/UPD8086D-2_NEC_1984year_19week_JAPAN.JPG
https://commons.wikimedia.org/w/index.php?title=User:Andrzej_w_k_2&action=edit&redlink=1
https://commons.wikimedia.org/w/index.php?title=User:Andrzej_w_k_2&action=edit&redlink=1
http://upload.wikimedia.org/wikipedia/commons/1/1c/Wiki_letter_w_cropped.svg
https://commons.wikimedia.org/wiki/File:Wiki_letter_w.svg
https://commons.wikimedia.org/wiki/File:Wiki_letter_w.svg
https://commons.wikimedia.org/wiki/User:Jarkko_Piiroinen
http://upload.wikimedia.org/wikipedia/commons/d/df/Wikibooks-logo-en-noslogan.svg
http://upload.wikimedia.org/wikipedia/commons/d/df/Wikibooks-logo-en-noslogan.svg
https://commons.wikimedia.org/wiki/User:Bastique
https://commons.wikimedia.org/wiki/User:Ramac
http://upload.wikimedia.org/wikipedia/commons/8/81/Wyprowadzenie_mikroprocesora_8086.JPG
http://upload.wikimedia.org/wikipedia/commons/8/81/Wyprowadzenie_mikroprocesora_8086.JPG
http://creativecommons.org/licenses/by-sa/3.0/

	Freescale 68HC11
	Architecture
	Implementations
	Other versions
	References
	External links

	Intel 8085
	Description
	Programming model
	Commands/instructions
	Input/output scheme
	Development system

	Applications
	MCS-85 family
	Educational use
	Simulators
	See also
	References
	External links

	Intel 8086
	History
	Background
	The first x86 design

	Details
	Buses and operation
	Registers and instructions
	Flags
	Segmentation
	Example code
	Performance
	Floating point

	Chip versions
	Derivatives and clones

	Hardware modes
	Peripherals
	Microcomputers using the 8086
	Notes
	See also
	References
	External links

	Intel MCS-51
	Important features and applications
	Derivate features

	Memory architecture
	Registers
	Instruction set
	Programming
	Related processors
	Derivate vendors

	Use as intellectual property
	MCU based on 8051
	Digital signal processor (DSP) variants
	Enhanced 8-bit binary compatible microcontroller: MCS-151 family
	8/16/32-bit binary compatible microcontroller: MCS-251 family
	See also
	References
	Further reading
	External links

	Motorola 6800
	Motorola’s history in semiconductors
	Development team
	MC6800 microprocessor design
	MOS ICs
	M6800 family introduction
	Design team breakup
	Move to Austin
	Personal computers
	Example code
	Peripherals
	Second sources
	Oral histories
	References
	External links

	PIC microcontroller
	History
	Core architecture
	Data space (RAM)
	Code space
	Word size
	Stacks
	Instruction set
	Performance
	Advantages
	Limitations
	Compiler development

	Family core architectural differences
	Baseline core devices (12 bit)
	ELAN Microelectronics clones (13 bit)
	Mid-range core devices (14 bit)
	Enhanced mid-range core devices (14 bit)
	PIC17 high end core devices (16 bit)
	PIC18 high end core devices (8 bit)
	PIC24 and dsPIC 16-bit microcontrollers
	PIC32 32-bit microcontrollers

	Device variants and hardware features
	Variants
	Trends
	Part number suffixes
	PIC clones

	Development tools
	Device programmers
	PICKit 2 clones and open source

	Debugging
	Software emulation
	In-circuit debugging
	In-circuit emulators

	Operating systems
	See also
	References
	External links

	Pulse-width modulation
	History
	Principle
	Delta
	Delta-sigma
	Space vector modulation
	Direct torque control (DTC)
	Time proportioning
	Types
	Spectrum
	PWM sampling theorem

	Applications
	Servos
	Telecommunications
	Power delivery
	Voltage regulation
	Audio effects and amplification
	Electrical

	See also
	References
	External links
	Text and image sources, contributors, and licenses
	Text
	Images
	Content license

