
1 Young Won Lim
7/6/19

Monad P2: State Monad Basics (2A)

2 Young Won Lim
7/6/19

 Copyright (c) 2016 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

State Monad Basics
(2A)

3 Young Won Lim
7/6/19

Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps

State Monad Basics
(2A)

4 Young Won Lim
7/6/19

 type String = [Char]

 phoneBook :: [(String,String)]

 type PhoneBook = [(String,String)]

 phoneBook :: PhoneBook

 type PhoneNumber = String

 type Name = String

 type PhoneBook = [(Name,PhoneNumber)]

 phoneBook :: PhoneBook

http://learnyouahaskell.com/making-our-own-types-and-typeclasses

Type Synonyms

 phoneBook =

 [("betty","555-2938")

 ,("bonnie","452-2928")

 ,("patsy","493-2928")

 ,("lucille","205-2928")

 ,("wendy","939-8282")

 ,("penny","853-2492")

]

State Monad Basics
(2A)

5 Young Won Lim
7/6/19

data Configuration = Configuration { username :: String }

let cfg = Configuration { username = "ABCD" }

username cfg Ô “ABCD”

newtype State s a = State { runState :: s -> (s, a) }

let stst = State { runState = (\y -> (y, y+1)) }

runState stst Ô (\y -> (y, y+1))

https://en.wikibooks.org/wiki/Haskell/More_on_datatypes

Record Syntax (named field)

Configuration :: String -> Configuration

username :: Configuration -> String

State ::(s -> (s, a)) -> State s a

runState :: State s a -> (s -> (s, a))

State Monad Basics
(2A)

6 Young Won Lim
7/6/19

data Configuration = Configuration { username :: String }

Configuration "ABCD" cfg :: Configuration

username cfg "ABCD" :: String

newtype State s a = State { runState :: s -> (s, a) }

State (\y -> (y, y+1)) stst :: State s a

runState stst (\y -> (y, y+1)) :: s -> (s, a)

https://en.wikibooks.org/wiki/Haskell/More_on_datatypes

Record Syntax

Configuration { username = "ABCD" }

State { runState = (\y -> (y, y+1)) }

State Monad Basics
(2A)

7 Young Won Lim
7/6/19

data Configuration = Configuration { username :: String }

data Configuration = Configuration { username :: String }

newtype State s a = State { runState :: s -> (s, a) }

newtype State s a = State { runState :: s -> (s, a) }

https://en.wikibooks.org/wiki/Haskell/More_on_datatypes

Record Syntax – type signatures

Configuration :: String -> Configuration

username :: Configuration -> String

State :: (s -> (s, a)) -> State s a

runState :: State s a -> (s -> (s, a))

State Monad Basics
(2A)

8 Young Won Lim
7/6/19

State Monad :

● a simple wrapper type

● usually defined with newtype.

type : type synonyms for an existing type (no data constructor)

newtype : can make an instance

A single data constructor : State { runState :: s -> (s, a) }

A single field : { runState :: s -> (s, a) }

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

A Wrapper Type

newtype State s a = State { runState :: s -> (a, s) }

single-field record

a function wrapped

in a record syntax

State Monad Basics
(2A)

9 Young Won Lim
7/6/19

data newtype

data can only be replaced with newtype

if the type has exactly one constructor

with exactly one field inside it.

a single constructor and a single field

allow the compiler to remove

the trivial wrapping and unwrapping

operations for the single field

(no runtime overhead)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

newtype and data

State Monad Basics
(2A)

10 Young Won Lim
7/6/19

data State s a = State { runState :: s -> (s, a) }

type State s a = State { runState :: s -> (s, a) }

newtype State s a = State { runState :: s -> (s, a) }

data instance overhead

type N/A N/A

newtype instance N/A

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

data, type, and newtype

State Monad Basics
(2A)

11 Young Won Lim
7/6/19

newtype Fd = Fd Cint (O)

newtype Fd = Fd Cint (O)

newtype Identity a = Identity a deriving (Eq, Ord, Read, Show) (O)

newtype State s a = State { runState :: s -> (s, a) } (O)

newtype Pair a b = Pair { pairFst :: a, pairSnd :: b } (X)

data Pair a b = Pair { pairFst :: a, pairSnd :: b } (O)

newtype NPair a b = NPair (a, b) (O)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

newtype examples

newtype enables an instance,

deriving clauses

Newtype enables the record

with only one constructor

and one field

2 fields not allowed in newtype

2 fields allowed in data

1 field : ordered pair

State Monad Basics
(2A)

12 Young Won Lim
7/6/19

newtype State s a = State { runState :: s -> (a, s) }

s : the type of the state,

a : the type of the produced result

s -> (a, s) : function type

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Parameterized type State

State String,

State Int,

State SomeLargeDataStructure,

and so forth.

State Monad Basics
(2A)

13 Young Won Lim
7/6/19

Calling the type State looks like a misnomer

because the wrapped value is not the state itself

but a state processor (accessor function: runState)

(a function is treated as a value in Haskell)

newtype State s a = State { runState :: s -> (a, s) }

The function is also a value

The wrapped value is a function

(state processor of the type s -> (s, a))

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

The wrapped function

s (a, s)

state processor :: (s -> (s, a))

State :: (s -> (s, a)) -> State s a

runState :: State s a -> (s -> (s, a))

data constructor

accessor function

data constructor

State Monad Basics
(2A)

14 Young Won Lim
7/6/19

The Haskell type State describes a state processor :: s -> (s, a)

that take a state s

and return both a result and an updated state, a, s

which are given back in a tuple. (a, s)

The state function is wrapped

by a data type definition (usually newtype)

with a runState accessor

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

The state function in a record

s (a, s)

newtype State s a = State { runState :: s -> (a, s) }

accessor function

wrapped in

a record with

a single field

state processor :: :: s -> (s, a)

State Monad Basics
(2A)

15 Young Won Lim
7/6/19

State : data constructor for single record with single field

newtype State s a = State { runState :: s -> (a, s) }

let stst = State { runState = (\y -> (y, y+1)) } a record syntax

● must make an accessor function using pattern matching

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Making a value – using the data constructor State

State Monad Basics
(2A)

16 Young Won Lim
7/6/19

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Making a value – using the function “state”

state
(s -> (a, s)) State s a

runState
(s -> (a, s))State s a

in practices, State data constructor is not allowed to be accessed

Instead, the function state is provided

newtype State s a = State { runState :: s -> (a, s) }

let stst = state (\y -> (y, y+1)) a library function

● the accessor function runState is provided
Control.Monad.Trans.State
exports a state function

State Monad Basics
(2A)

17 Young Won Lim
7/6/19

Accessor Function runState

s (a, s)

 state processor

a

stst :: State s a

1) let stst = State { runState = (\y -> (y, y+1)) }

runState stst (\y -> (y, y+1)) -- no instance error

s

a s binding variable type

2) let stst = state (\y -> (y, y+1))

runState stst 1 (1, 2)

run State Processor (Function)

State Monad Basics
(2A)

18 Young Won Lim
7/6/19

Control.Monad.Trans.State, transformers package. (focused here)

Control.Monad.State, mtl (Monad Transformer Library) package.

Control.Monad.State.Lazy, mtl (Monad Transformer Library) package.

import Control.Monad.Trans.State

import Control.Monad.State

import Control.Monad.State.Lazy

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

State Packages

State Monad Basics
(2A)

19 Young Won Lim
7/6/19

transformers: Concrete functor and monad transformers

This package contains:

● the monad transformer class (in Control.Monad.Trans.Class)

● concrete functor and monad transformers,

● each with associated operations and functions

to lift operations associated with other transformers.

http://hackage.haskell.org/package/transformers

Transformer Packages

State Monad Basics
(2A)

20 Young Won Lim
7/6/19

The package can be used on its own in portable Haskell code,

in which case operations need to be manually lifted through transformer stacks

(see Control.Monad.Trans.Class for some examples).

Alternatively, it can be used with the non-portable monad classes

in the mtl or monads-tf packages, which automatically lift operations

introduced by monad transformers through other transformers.

http://hackage.haskell.org/package/transformers

Transformer Packages

State Monad Basics
(2A)

21 Young Won Lim
7/6/19

A monad transformer makes a new monad out of an existing monad,

such that computations of the old monad may be embedded in the new one.

To construct a monad with a desired set of features,

one typically starts with a base monad, such as Identity, [] or IO,

and applies a sequence of monad transformers.

http://hackage.haskell.org/package/transformers-0.5.6.2/docs/Control-Monad-Trans-Class.html

Monad Transformer Class

State Monad Basics
(2A)

22 Young Won Lim
7/6/19

class MonadTrans t where

The class of monad transformers.

Instances should satisfy the following laws,

which state that lift is a monad transformation:

 lift . return = return

 lift (m >>= f) = lift m >>= (lift . f)

Methods

lift :: Monad m => m a -> t m a

Lift a computation from the argument monad to the constructed monad.

http://hackage.haskell.org/package/transformers-0.5.6.2/docs/Control-Monad-Trans-Class.html

Monad Transformer Class

State Monad Basics
(2A)

23 Young Won Lim
7/6/19

Control.Monad.Trans.State

no State data constructor

instead the function “state”

state :: (s -> (a, s)) -> State s a

Control.Monad.State

different implements of the State

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

The “state” function

state
(s -> (a, s)) State s a

state
State s a

s (a, s)

State Monad Basics
(2A)

24 Young Won Lim
7/6/19

State is a record with only one element,

whose type is a function (:: s -> (a, s))

runState converts a value of type State s a

to a function of this type (:: s -> (a, s))

runState :: State s a -> s -> (a, s)

apply runState to a value of the type State s a,

the return type is a function type s -> (a, s)

https://stackoverflow.com/questions/3240947/understanding-haskell-accessor-functions

runState function

newtype State s a = State { runState :: s -> (a, s) }

runState
(s -> (a, s))State s a

runState
State s a

s (a, s)

State Monad Basics
(2A)

25 Young Won Lim
7/6/19

https://stackoverflow.com/questions/3240947/understanding-haskell-accessor-functions

state & runState functions

newtype State s a = State { runState :: s -> (a, s) }

runState :: State s a -> s -> (a, s)

 state :: s -> (a, s) -> State s a

runState
State s a

s (a, s)

state
State s a

s (a, s)

State Monad Basics
(2A)

26 Young Won Lim
7/6/19

https://stackoverflow.com/questions/3240947/understanding-haskell-accessor-functions

runState function – partially applied

newtype State s a = State { runState :: s -> (a, s) }

runState :: State s a -> s -> (a, s)

runState :: State s a -> s -> (a, s)

runState
(s -> (a, s))State s a

runState
State s a

s (a, s)

runState

State s a

s
(a, s)

runState
(a, s)State s a s

State Monad Basics
(2A)

27 Young Won Lim
7/6/19

wrap a function type and give it a name.

State s can be made into a Monad instance, for every type s

the type of a Monad instance is State s

State can not be made into a Monad instance,

(as that instance would take two type parameters, rather than one.)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Instantiating a State Monad

s -> (a, s)

State s a

State s a

Monad

Monad

State Monad Basics
(2A)

28 Young Won Lim
7/6/19

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Monad instance of State s

instance Monad (State s) where

newtype State s a = State { runState :: s -> (a, s) }

return implementation

(>>=) implementation

1) let stst = State { runState = (\y -> (y, y+1)) }

2) let stst = state (\y -> (y, y+1))

a way of thinking

an actual way

a record construction

a library function

State Monad Basics
(2A)

29 Young Won Lim
7/6/19

many different State monads,

one for each possible type of state -

State String,

State Int,

State SomeLargeDataStructure,

and so forth.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Common implementation of return and >>=

one implementation of

● return

● (>>=)

can handle these different (State s) monads

according to different choices of s.

instance Monad (State s) where

State Monad Basics
(2A)

30 Young Won Lim
7/6/19

instance Monad (State s) where

return :: a -> State s a

return x = state (\s -> (x, s))

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

return method

State s a

return
a State s a

state
State s a

s (a, s)

agiving a value (x) to return

results in a state processor function

which takes a state (s) and

returns it unchanged (s),

together with the value x

finally, the function is wrapped up by state.

return

State Monad Basics
(2A)

31 Young Won Lim
7/6/19

s (a, s)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

return, state, runState methods

state
(s -> (a, s)) State s a

runState
(s -> (a, s))State s a

return
a State s a

State
s (a, s)

State
s (a, s)

State
s (a, s)

s (a, s)

State Monad Basics
(2A)

32 Young Won Lim
7/6/19

runState (return 'X') 1

 ('X',1)

return sets the result value but leave the state unchanged.

 return 'X' :: State Int Char

 runState (return 'X') :: Int -> (Char, Int)

 runState (return 'X') 1 (‘X’, 1)

 initial state = 1 :: Int

 result value = 'X' :: Char

 final state = 1 :: Int

 return value = ('X', 1) :: (Char, Int)

https://wiki.haskell.org/State_Monad

State Monad Examples – return

('X', s) s

State
s (Char, s)

return 'X' :: State Int Char

runState (return 'X') :: Int -> (Char, Int)

runState (return 'X') 1 (‘X’, 1)

('X', 1) 1

State Monad Basics
(2A)

33 Young Won Lim
7/6/19

runState

unwrap the State s a value

to get the actual state processing function

then it is applied to some initial state

to get the tuple (result, updated state)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

runState, evalState and execState

runState
(a, s)State s a s

evalState
aState s a s

execState
sState s a s

result computation

state update

State Monad Basics
(2A)

34 Young Won Lim
7/6/19

Given a State s a and an initial state s,

evalState only the result value

execState just the new state.

evalState :: State s a -> s -> a

evalState p s = fst (runState p s)

execState :: State s a -> s -> s

execState p s = snd (runState p s)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

evalState and execState

evalState
aState s a s

execState
sState s a s

p :: State s a

s :: s

p s (a, s)

result computation

state update

State Monad Basics
(2A)

35 Young Won Lim
7/6/19

evalState :: State s a -> s -> a

evalState act = fst . runState act

execState :: State s a -> s -> s

execState act = snd . runState act

https://wiki.haskell.org/State_Monad

fst and snd in evalState and execState

runState
(a, s)State s a s

fst
a

runState
(a, s)State s a s

snd
s

State Monad Basics
(2A)

36 Young Won Lim
7/6/19

instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Function type of >>=

p :: State s a

k :: (a -> State s b)

p >>= k

State s a -> (a -> State s b) -> State s b

p k

>>=p

 k

q

>>=
State s a

(a -> State s b)

 State s b

State Monad Basics
(2A)

37 Young Won Lim
7/6/19

instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

1st and 2nd arguments of >>= :

k

aState s

a bState s

p :: State s a

k :: (a -> State s b)

>>=p

 k

q

State Monad Basics
(2A)

38 Young Won Lim
7/6/19

instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Binding operator >>=

k

>>=aState s

a

b

b

State s

State s

>>=1st arg

2nd arg

Return

value
1st arg

p

p :: State s a State Monad value

k :: (a -> State s b) State Monad returning function

p >>= k = q

State Monad Basics
(2A)

39 Young Won Lim
7/6/19

instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Conceptual computation flow of >>=

k

>>=aState s

a

b

b

State s

State s

p

extracts

state transition : running the state processor

returns

q

State Monad Basics
(2A)

40 Young Won Lim
7/6/19

instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

 p' = runState p -- p' :: s -> (a, s)

 k' = runState . k -- k' :: a -> s -> (b, s)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Unwrapping the state processing function : runState

k

>>=aState s

a

b

b

State s

State s

p

r

aState sp bState sr

p' = runState p

 :: s -> (a, s)

r' = runState r

 :: s -> (b, s)p' r'

runState unwraps

state processors

p’ and r’

State Monad Basics
(2A)

41 Young Won Lim
7/6/19

instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

 p' = runState p -- p' :: s -> (a, s)

 k' = runState . k -- k' :: a -> s -> (b, s)

x :: a

k :: a -> State s b

k x :: State s b

r = k x :: State s b

runState r :: s -> (b, s)

runState p :: s -> (a, s)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Composite Function runState . k

k

runState p
 :: s -> (a, s)

runState r
 :: s -> (b, s) :: a -> State s b

runState . k
 :: a -> s -> (b, s)

(1) (2)

k

>>=aState s

a

b

b

State s

State s

p

r

x k x

State Monad Basics
(2A)

42 Young Won Lim
7/6/19

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

runState and runState . (k x)

s (a, s)
runState p

s (b, s)
runState . (k x)

s0 (x, s1)

s1 (y, s2)

instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

 p' = runState p -- p' :: s -> (a, s)

 k' = runState . k -- k' :: a -> s -> (b, s)

runState p
 :: s -> (a, s)

runState . k
 :: a -> s -> (b, s)

State Monad Basics
(2A)

43 Young Won Lim
7/6/19

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

State Transitions

(x, S1) (y, s2)(?, s0)

s (a, s)
p’ = runState p

s (b, s)
k’ x = runState . (k x)

s0 (x, s1)

s1 (y, s2)

instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

 p' = runState p -- p' :: s -> (a, s)

 k' = runState . k -- k' :: a -> s -> (b, s)

 q' s0 = (y, s2) where -- q' :: s -> (b, s)

 (x, s1) = p' s0 -- (x, s1) :: (a, s)

 (y, s2) = k' x s1 -- (y, s2) :: (b, s)

 q = state q'

State Monad Basics
(2A)

44 Young Won Lim
7/6/19

instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

 p' = runState p -- p' :: s -> (a, s)

 k' = runState . k -- k' :: a -> s -> (b, s)

 q' s0 = (y, s2) where -- q' :: s -> (b, s)

 (x, s1) = p' s0 -- (x, s1) :: (a, s)

 (y, s2) = k' x s1 -- (y, s2) :: (b, s)

 q = state q'

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

State Transition from s0 to s2

p's0 (x, s1) k’ (y, s2)s1

x

q’s0 (y, s2)

binding

variables

State Monad Basics
(2A)

45 Young Won Lim
7/6/19

(>>=) :: State s a -> (a -> State s b) -> State s b

(act1 >>= fact2) s = runState act2 is

 where (iv, is) = runState act1 s

 act2 = fact2 iv

https://wiki.haskell.org/State_Monad

Unwrapped Implementation Examples

runState
(a, s)State s a s

act1 s (iv, is)

fact2
iv

State s aa

runState
(a, s)State s a s

is (ov, os)

act2

act2

p

k q (p >>= k)act1 p

fact2 k

act2 q

act1 s

State Monad Basics
(2A)

46 Young Won Lim
7/6/19

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

State Transition from s0 to s2

runState
(a, s)State s a s

act1 s (iv, is)

fact2
iv

State s aa

runState
(a, s)State s a s

 is (ov, os)

act2

act2

 (iv, is) (ov, os) (*, s)

p's0 (x, s1) k’ (y, s2)s1

x

q’s0 (y, s2)

 (ov, os) (*, s)

State Monad Basics
(2A)

47 Young Won Lim
7/6/19

instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = state $ \ s0 ->

 let (x, s1) = runState p s0

 in runState (k x) s1

state (\ s0 -> (y, s2))

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Another implementation of >>=

runState ps0 (x, s1)

runState (k x) (y, s2)s1

-- running the first processor on s0.

-- running the second processor on s1.

State Monad Basics
(2A)

48 Young Won Lim
7/6/19

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48

