
Young Won Lim
11/18/16

Minix2 File System (1A)

Young Won Lim
11/18/16

 Copyright (c) 2016 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Minix2 File System (1A)
3 Young Won Lim

11/18/16

Based on

Based on Minix2

http://minix1.woodhull.com/current/2.0.4/

http://minix1.woodhull.com/current/2.0.4/

Minix2 File System (1A)
4 Young Won Lim

11/18/16

Basic Data Types

cache2.c
cache.c
device.c
filedes.c
inode.c
link.c
lock.c
main.c
misc.c
mount.c
open.c

path.c
pipe.c
protect.c
read.c
stadir.c
super.c
table.c
time.c
utility.c
write.c

buf.h
const.h
dev.h
file.h
fproc.h
fs.h
glo.h
inode.h
lock.h
param.h
proto.h
super.h
type.h

Minix2 File System (1A)
5 Young Won Lim

11/18/16

file.h – file pointer structure

/* This is the filp table. It is an intermediary between file descriptors and
 * inodes. A slot is free if filp_count == 0.
 */

EXTERN struct filp {
 mode_t filp_mode; /* RW bits, telling how file is opened */
 int filp_flags; /* flags from open and fcntl */
 int filp_count; /* how many file descriptors share this slot?*/
 struct inode * filp_ino; /* pointer to the inode */
 off_t filp_pos; /* file position */
} filp[NR_FILPS];

#define FILP_CLOSED 0 /* filp_mode: associated device closed */

#define NIL_FILP (struct filp *) 0 /* indicates absence of a filp slot */

Minix2 File System (1A)
6 Young Won Lim

11/18/16

inode.h – inode table (1)

Inode table.
This table holds inodes that are currently in use.

In some cases they have been opened by an open() or creat() system call,
in other cases the file system itself needs the inode for one reason or another,
such as to search a directory for a path name.

The first part of the struct holds fields that are present on the disk
the second part holds fields not present on the disk.

The disk inode part is also declared in "type.h"
as 'd1_inode' for V1 file systems
and 'd2_inode' for V2 file systems.

Minix2 File System (1A)
7 Young Won Lim

11/18/16

inode.h – inode table (2)

EXTERN struct inode {
 mode_t i_mode; /* file type, protection, etc. */
 nlink_t i_nlinks; /* how many links to this file */
 uid_t i_uid; /* user id of the file's owner */
 gid_t i_gid; /* group number */
 off_t i_size; /* current file size in bytes */
 time_t i_atime; /* time of last access (V2 only) */
 time_t i_mtime; /* when was file data last changed */
 time_t i_ctime; /* when was inode itself changed (V2 only)*/
 zone_t i_zone[V2_NR_TZONES];

/* zone numbers for direct, ind, and dbl ind */

Minix2 File System (1A)
8 Young Won Lim

11/18/16

inode.h – inode table (3)

EXTERN struct inode {
 …
 /* The following items are not present on the disk. */
 dev_t i_dev; /* which device is the inode on */
 ino_t i_num; /* inode number on its (minor) device */
 int i_count; /* # times inode used; 0 means slot is free */
 int i_ndzones; /* # direct zones (Vx_NR_DZONES) */
 int i_nindirs; /* # indirect zones per indirect block */
 struct super_block *i_sp; /* pointer to super block for inode's device */
 char i_dirt; /* CLEAN or DIRTY */
 char i_pipe; /* set to I_PIPE if pipe */
 char i_mount; /* this bit is set if file mounted on */
 char i_seek; /* set on LSEEK, cleared on READ/WRITE */
 char i_update; /* the ATIME, CTIME, and MTIME bits here */
} inode[NR_INODES];

Minix2 File System (1A)
9 Young Won Lim

11/18/16

inode.h – inode table (4)

#define NIL_INODE (struct inode *) 0 /* indicates absence of inode slot */

/* Field values. Note that CLEAN and DIRTY are defined in "const.h" */
#define NO_PIPE 0 /* i_pipe is NO_PIPE if inode is not a pipe */
#define I_PIPE 1 /* i_pipe is I_PIPE if inode is a pipe */
#define NO_MOUNT 0 /* i_mount is NO_MOUNT if file not mounted on*/
#define I_MOUNT 1 /* i_mount is I_MOUNT if file mounted on */
#define NO_SEEK 0 /* i_seek = NO_SEEK if last op was not SEEK */
#define ISEEK 1 /* i_seek = ISEEK if last op was SEEK */

Minix2 File System (1A)
10 Young Won Lim

11/18/16

super.h – super block (1)

Super block table.
The root file system and every mounted file system has an entry here.
The entry holds information about the sizes of the bit maps and inodes.
The s_ninodes field gives the number of inodes available
for files and directories, including the root directory.
Inode 0 is on the disk, but not used.
Thus s_ninodes = 4 means that 5 bits will be used in the bit map,
bit 0, which is always 1 and not used,
and bits 1-4 for files and directories.

A super_block slot is free if s_dev == NO_DEV.

Minix2 File System (1A)
11 Young Won Lim

11/18/16

super.h – super block (2)

The disk layout is:
 Item # blocks
 boot block 1
 super block 1
 inode map s_imap_blocks
 zone map s_zmap_blocks
 inodes (s_ninodes + 'inodes per block' - 1)/'inodes per block'
 unused whatever is needed to fill out the current zone
 data zones (s_zones - s_firstdatazone) << s_log_zone_size

Minix2 File System (1A)
12 Young Won Lim

11/18/16

super.h – super block (3)

EXTERN struct super_block {
 ino_t s_ninodes; /* # usable inodes on the minor device */
 zone1_t s_nzones; /* total device size, including bit maps etc */
 short s_imap_blocks; /* # of blocks used by inode bit map */
 short s_zmap_blocks; /* # of blocks used by zone bit map */
 zone1_t s_firstdatazone; /* number of first data zone */
 short s_log_zone_size; /* log2 of blocks/zone */
 off_t s_max_size; /* maximum file size on this device */
 short s_magic; /* magic number to recognize super-blocks */
 short s_pad; /* try to avoid compiler-dependent padding */
 zone_t s_zones; /* number of zones (replaces s_nzones in V2) */
 ….
} super_block[NR_SUPERS];

#define NIL_SUPER (struct super_block *) 0
#define IMAP 0 /* operating on the inode bit map */
#define ZMAP 1 /* operating on the zone bit map */

Minix2 File System (1A)
13 Young Won Lim

11/18/16

super.h – super block (4)

EXTERN struct super_block {
 ...
 /* The following items are only used when the super_block is in memory. */
 struct inode * s_isup; /* inode for root dir of mounted file sys */
 struct inode * s_imount; /* inode mounted on */
 unsigned s_inodes_per_block; /* precalculated from magic number */
 dev_t s_dev; /* whose super block is this? */
 int s_rd_only; /* set to 1 iff file sys mounted read only */
 Int s_native; /* set to 1 iff not byte swapped file system */
 int s_version; /* file system version, 0 means bad magic */
 int s_ndzones; /* # direct zones in an inode */
 int s_nindirs; /* # indirect zones per indirect block */
 bit_t s_isearch; /* inodes below this bit number are in use */
 bit_t s_zsearch; /* all zones below this bit number are in use*/
} super_block[NR_SUPERS];

Young Won Lim
11/18/16

References

[1] http://minix1.woodhull.com/current/2.0.4/
[2]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

