
Young Won Lim
12/16/20

● Task
●

OpenMP Task Parallelism (3A)

Young Won Lim
12/16/20

 Copyright (c) 2020 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

mailto:youngwlim@hotmail.com

OpenMP Task (3A) 3 Young Won Lim
12/16/20

Single

The single construct specifies that
the associated structured block is
executed by only one of the threads in the team
(not necessarily the master thread),
in the context of its implicit task.

The other threads in the team,
which do not execute the block,
wait at an implicit barrier
at the end of the single construct
unless a nowait clause is specified.

https://www.openmp.org/spec-html/5.0/openmpsu38.html

OpenMP Task (3A) 4 Young Won Lim
12/16/20

c(0)

c(1)

c(2)

c(3)

Single

denotes block of code
to be executed by only one thread

• first thread to arrive is chosen
• implicit barrier at end

#pragma omp parallel
{

a();
#pragma omp single
{

b();
} // threads wait here for single
c();

}

https://www.intel.com/content/dam/www/public/apac/xa/en/pdfs/ssg/Programming_with_OpenMP-Linux.pdf

a(0)

a(2)

a(4)

a(8)

a(1)

a(3)

bchosen

OpenMP Task (3A) 5 Young Won Lim
12/16/20

Master

Denotes block of code to be executed only by the master thread
No implicit barrier at end

#pragma omp parallel
{

a();
#pragma omp master
{ // if not master skip to next stmtp

b();
}
c();

|

https://www.intel.com/content/dam/www/public/apac/xa/en/pdfs/ssg/Programming_with_OpenMP-Linux.pdf

c(0)

c(1)

c(2)

c(3)

a(0)

a(2)

a(4)

a(8)

a(1)

a(3)

bmaster

OpenMP Task (3A) 6 Young Won Lim
12/16/20

Nowait (1)

In an omp parallel region, automatically wait for all threads to finish
In an omp for loop, a synchronization point after the end of the loop

a();
#pragma omp parallel
{
 b();
 #pragma omp for
 for (int i = 0; i < 10; ++i) {
 c(i);
 }
 d();
}
z();

http://ppc.cs.aalto.fi/ch3/nowait/

a b

b

b

b

c(0)

c(3)

c(6)

c(8)

c(1)

c(4)

c(7)

c(9)

c(2)

c(5)

d

d

d

d

z

OpenMP Task (3A) 7 Young Won Lim
12/16/20

Nowait (2)

no thread will execute d() until all threads are done with the loop:
However, if you do not need synchronization after the loop, you can disable it with nowait:

a();
#pragma omp parallel
{
 b();
 #pragma omp for nowait
 for (int i = 0; i < 10; ++i) {
 c(i);
 }
 d();
}
z();

http://ppc.cs.aalto.fi/ch3/nowait/

a b

b

b

b

c(0)

c(3)

c(6)

c(8)

c(1)

c(4)

c(7)

c(9)

c(2)

c(5)

d

d

d

d

z

OpenMP Task (3A) 8 Young Won Lim
12/16/20

Nowait (3)

for a critical section after a loop,
first wait for all threads to finish their loop iterations
before letting any of the threads to enter a critical section:

a();
#pragma omp parallel
{
 b();
 #pragma omp for
 for (int i = 0; i < 10; ++i) {
 c(i);
 }
 #pragma omp critical
 { d(); }
}
z();

http://ppc.cs.aalto.fi/ch3/nowait/

a b

b

b

b

c(0)

c(3)

c(6)

c(8)

c(1)

c(4)

c(7)

c(9)

c(2)

c(5)

d

d

d

z

d

OpenMP Task (3A) 9 Young Won Lim
12/16/20

Nowait (4)

disable this waiting, so that some threads can start doing postprocessing early.
This would make sense if, e.g., d() updates some global data structure based on what the
thread computed in its own part of the parallel for loop:

a();
#pragma omp parallel
{
 b();
 #pragma omp for nowait
 for (int i = 0; i < 10; ++i) {
 c(i);
 }
 #pragma omp critical
 { d(); }
}
z();

http://ppc.cs.aalto.fi/ch3/nowait/

a b

b

b

b

c(0)

c(3)

c(6)

c(8)

c(1)

c(4)

c(7)

c(9)

c(2)

c(5)

d

d

d

z

d

OpenMP Task (3A) 10 Young Won Lim
12/16/20

Nowait (5)

Note that there is no synchronization point before the loop starts. If threads reach the for
loop at different times, they can start their own part of the work as soon as they are there,
without waiting for the other threads:

a();
#pragma omp parallel
{
 #pragma omp critical
 {
 b();
 }
 #pragma omp for
 for (int i = 0; i < 10; ++i) {
 c(i);
 }
 d();
}
z();

http://ppc.cs.aalto.fi/ch3/nowait/

a c(0)

c(3)

c(6)

c(8)

c(1)

c(4)

c(7)

c(9)

c(2)

c(5)

d

d

d

z

d

b

b

b

b

OpenMP Task (3A) 11 Young Won Lim
12/16/20

Single (1)

int main()
{
 int salaries1 = 0;
 int salaries2 = 0;

 for (int employee = 0; employee < 25000; employee++)
 {
 salaries1 += fetchTheSalary(employee, Co::Company1);
 }

 std::cout << "Salaries1: " << salaries1 << std::endl;

 for (int employee = 0; employee < 25000; employee++)
 {
 salaries2 += fetchTheSalary(employee, Co::Company2);
 }

 std::cout << "Salaries2: " << salaries2 << std::endl;

 return 0;
}

http://jakascorner.com/blog/2016/06/omp-single.html

OpenMP Task (3A) 12 Young Won Lim
12/16/20

Single (2)

int salaries1 = 0;
int salaries2 = 0;

#pragma omp parallel shared(salaries1, salaries2)
{
 #pragma omp for reduction(+: salaries1)
 for (int employee = 0; employee < 25000; employee++)
 {
 salaries1 += fetchTheSalary(employee, Co::Company1);
 }

 std::cout << "Salaries1: " << salaries1 << std::endl;

 #pragma omp for reduction(+: salaries2)
 for (int employee = 0; employee < 25000; employee++)
 {
 salaries2 += fetchTheSalary(employee, Co::Company2);
 }

 std::cout << "Salaries2: " << salaries2 << std::endl;
}

http://jakascorner.com/blog/2016/06/omp-single.html

FORK

FOR

END FOR

FOR

END FOR

JOIN

#pragma omp
 parallel

1st for loop

2nd for loop

1st printing

2nd printing

OpenMP Task (3A) 13 Young Won Lim
12/16/20

Single (v1)

#pragma omp parallel for reduction(+: salaries1)
for (int employee = 0; employee < 25000; employee++)
{
 salaries1 += fetchTheSalary(employee, Co::Company1);
}

std::cout << "Salaries1: " << salaries1 << std::endl;

#pragma omp parallel for reduction(+: salaries2)
for (int employee = 0; employee < 25000; employee++)
{
 salaries2 += fetchTheSalary(employee, Co::Company2);
}

std::cout << "Salaries2: " << salaries2 << std::endl;

http://jakascorner.com/blog/2016/06/omp-single.html

FORK

JOIN

FOR

JOIN

#pragma omp
 parallel

1st for loop

2nd for loop

1st printing

2nd printing

OpenMP Task (3A) 14 Young Won Lim
12/16/20

Single (v2)

#pragma omp parallel for reduction(+: salaries1, salaries2)
for (int employee = 0; employee < 25000; employee++)
{
 salaries1 += fetchTheSalary(employee, Co::Company1);
 salaries2 += fetchTheSalary(employee, Co::Company2);
}

std::cout << "Salaries1: " << salaries1 << "\n"
 << "Salaries2: " << salaries2 << std::endl;

http://jakascorner.com/blog/2016/06/omp-single.html

FORK

FOR

END FOR

JOIN

#pragma omp
 parallel

1st for loop

2nd for loop

1st printing
2nd printing

OpenMP Task (3A) 15 Young Won Lim
12/16/20

Single (v3)

#pragma omp parallel shared(salaries1, salaries2)
{
 #pragma omp for reduction(+: salaries1)
 for (int employee = 0; employee < 25000; employee++)
 {
 salaries1 += fetchTheSalary(employee, Co::Company1);
 }

 #pragma omp single
 {
 std::cout << "Salaries1: " << salaries1 << std::endl;
 }

 #pragma omp for reduction(+: salaries2)
 for (int employee = 0; employee < 25000; employee++)
 {
 salaries2 += fetchTheSalary(employee, Co::Company2);
 }
}

std::cout << "Salaries2: " << salaries2 << std::endl;

http://jakascorner.com/blog/2016/06/omp-single.html

FORK

FOR

END FOR

FOR

END FOR

JOIN

#pragma omp
 parallel

1st for loop

2nd for loop

1st printing

2nd printing

SINGLE

END SINGLE

OpenMP Task (3A) 16 Young Won Lim
12/16/20

Tasking

● Tasking was introduced in OpenMP 3.0
● Until then it was impossible to efficiently and easily

implement certain types of parallelism
● the initial functionality was very simple by design
● note that tasks can be nested

https://www.openmp.org//wp-content/uploads/sc13.tasking.ruud.pdf

OpenMP Task (3A) 17 Young Won Lim
12/16/20

Tasking

Developer
● Use a pragma to specify where the tasks are
● Assume that all tasks can be executed independently

OpenMP runtime system
● when a thread encounters a task construct,

a new task is generated
● the moment of execution of the task

is up to the runtime system
● execution can either be immediate or delayed
● completion of a task can be enforced

through task synchronization

https://www.openmp.org//wp-content/uploads/sc13.tasking.ruud.pdf

OpenMP Task (3A) 18 Young Won Lim
12/16/20

Tasking

The task pragma can be used to explicitly define a task.

Use the task pragma when you want to identify a block of code
to be executed in parallel with the code outside the task region.

The task pragma can be useful for parallelizing irregular algorithms
such as pointer chasing or recursive algorithms.

The task directive takes effect only if
you specify the SMP compiler option.

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-task.html

OpenMP Task (3A) 19 Young Won Lim
12/16/20

Tasking – smp option

Symmetric Multi Processing

-qnosmp | -qsmp[=suboption[:suboption] [...]]

specifies if and how parallelized object code is generated,
according to suboption(s) specified:

http://ps-2.kev009.com/wisclibrary/vacpp/batch/ref/ruoptsmp.htm

OpenMP Task (3A) 20 Young Won Lim
12/16/20

Tasking – task region

task
a specific instance of executable code and its data environment
that the OpenMP implementation can schedule for execution by threads.

task region
A region consisting of all code encountered
during the execution of a task.

COMMENT: A parallel region consists of
one or more implicit task regions.

implicit task
A task generated by an implicit parallel region or
generated when a parallel construct is encountered during execution.

https://www.openmp.org/spec-html/5.0/openmpsu5.html

OpenMP Task (3A) 21 Young Won Lim
12/16/20

Tasking

if you specify something as being parallel,
OpenMP will create a ‘block of work‘:

a section of code plus the data environment
in which it occurred.

This block is set aside for execution at some later point.

The task mechanism allows you to do things that are
hard or impossible with the loop and section constructs.

for instance, a loop traversing a linked list can be implemented with tasks:

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-task.html

OpenMP Task (3A) 22 Young Won Lim
12/16/20

Tasking

x = f (); // the variable x gets a value
pragma omp task { // a task is created with the current value of x

y = g(x);
}
z = h(); // the variable z gets a value

The thread that executes this code segment creates a task,
which will later be executed, probably by a different thread.
The exact timing of the execution of the task is
up to a task scheduler,
which operates invisible to the user.

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-task.html

OpenMP Task (3A) 23 Young Won Lim
12/16/20

Task example (1)

#include <stdlib.h>
#include <stdio.h>
int main(intargc, char *argv[])
{

printf("A ");
printf("race ");
printf("car ");
printf("\n");
return(0);

}

$ cc -fast hello.c
$./a.out
A race car
$

https://www.openmp.org//wp-content/uploads/sc13.tasking.ruud.pdf

#include <stdlib.h>
#include <stdio.h>
int main(intargc, char *argv[])
{

#pragma omp parallel {
printf("A ");
printf("race ");
printf("car ");

}
printf("\n");
return(0);

}

$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2 $
./a.out
A race car A race car or

“A A race race car car” or
“A race A car race car” or
“A race A race car car”

OpenMP Task (3A) 24 Young Won Lim
12/16/20

Task example (2)

#include <stdlib.h>
#include <stdio.h>
int main(intargc, char *argv[])
{

#pragma omp parallel {
#pragma omp single {

 printf("A ");
 printf("race ");
 printf("car ");

}
 }

printf("\n");
return(0);

}

$ cc -xopenmp –fast hello.c
$ export OMP_NUM_THREADS=2 $
./a.out
A race car

https://www.openmp.org//wp-content/uploads/sc13.tasking.ruud.pdf

#include <stdlib.h>
#include <stdio.h>
int main(intargc, char *argv[])
{

#pragma omp parallel {
#pragma omp single {

printf("A ");
#pragma omp task { printf("race ");}
#pragma omp task { printf("car "); }

}
 }

printf("\n");
return(0);

}

$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2
$./a.out A race car
$./a.out A race car
$./a.out A car race
$

OpenMP Task (3A) 25 Young Won Lim
12/16/20

Task example (3)

#include <stdlib.h>
#include <stdio.h>
int main(intargc, char *argv[])
{

#pragma omp parallel {
#pragma omp single {

printf("A ");
#pragma omp task { printf("race ");}
#pragma omp task { printf("car "); }
printf(“is fun to watch “);

}
 }

printf("\n");
return(0);

}

$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2
$./a.out A is fun to watch race car
$./a.out A is fun to watch race car
$./a.out A is fun to watch car race
$

https://www.openmp.org//wp-content/uploads/sc13.tasking.ruud.pdf

#include <stdlib.h>
#include <stdio.h>
int main(intargc, char *argv[])
{

#pragma omp parallel {
#pragma omp single {

printf("A ");
#pragma omp task { printf("race "); }
#pragma omp task { printf("car "); }
#pragma omp taskwait { printf(“is fun to watch “); }

}
 }

printf("\n");
return(0);

}

$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2
$./a.out A race car is fun to watch
$./a.out A race car is fun to watch
$./a.out A car race is fun to watch
$

OpenMP Task (3A) 26 Young Won Lim
12/16/20

Tasking

With tasks it becomes possible to parallelize processes
that did not fit the earlier OpenMP constructs.

For instance, if a certain operation needs to be applied
to all elements of a linked list, you can have
one thread go down the list, #pragrma omp single
generating a task for each element of the list.

#pragma omp parallel
#pragma omp single
{
 p = head of list(); // one thread traverses the list

while(!end of list(p)) {
#pragma omp task // a task is created,

process(p); // one for each element
p = next element(p); // the generating thread goes on without waiting

} // the tasks are executed while more are being generated.

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-task.html

OpenMP Task (3A) 27 Young Won Lim
12/16/20

Tasking

p = head of list(); // one thread traverses the list
while(!end of list(p)) {

#pragma omp task // a task is created,
process(p); // one for each element

p = next element(p); // the generating thread goes on without waiting
} // the tasks are executed while more are being generated.

The way tasks and threads interact is different from
the other worksharing constructs
Typically, one thread will generate the tasks,
adding them to a queue, from which all threads
can take and execute them.

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-task.html

OpenMP Task (3A) 28 Young Won Lim
12/16/20

Tasking

#pragma omp parallel
#pragma omp single
{
 p = head of list(); // one thread traverses the list

while(!end of list(p)) {
#pragma omp task // a task is created,

process(p); // one for each element
p = next element(p); // the generating thread goes on without waiting

} // the tasks are executed while more are being generated.

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-task.html

p = head of list();
while(!end of list(p)) {

p = next element(p);
}

process(p1) process(p2) process(p3)

OpenMP Task (3A) 29 Young Won Lim
12/16/20

Tasking

#pragma omp parallel // A parallel region creates a team of threads;
#pragma omp single
{
 ...
#pragma omp task // a single thread then creates the tasks,
 { ... } // adding them to a queue that belongs to the team,
 … // and all the threads in that team
} // (possibly including the one that generated the tasks)

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-task.html

OpenMP Task (3A) 30 Young Won Lim
12/16/20

Task Data (1)

Treatment of data in a task is somewhat subtle.
a task gets created at one time,
and executed at another.

if shared data is accessed,
does the task see the value
at creation time or at execution time?

In fact, both possibilities make sense
depending on the application

The first rule is that shared data is
shared in the task, but private data
becomes code fragments.

In the first example:

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-task.html

OpenMP Task (3A) 31 Young Won Lim
12/16/20

Task Data (2)

int count = 100;
#pragma omp parallel
#pragma omp single
{
 while (count>0) {
#pragma omp task
 {
 int countcopy = count;
 if (count==50) {
 sleep(1);
 printf("%d,%d\n",count,countcopy);
 } // end if
 } // end task
 count--;
 } // end while
} // end single

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-task.html

the variable count
declared outside the parallel region
is therefore shared.

when the print statement is executed,
all tasks will have been generated,
and so count will be zero.

Thus, the output will likely be 0,50

OpenMP Task (3A) 32 Young Won Lim
12/16/20

Task Data (3)

#pragma omp parallel
#pragma omp single
{
 int count = 100;
 while (count>0) {
#pragma omp task
 {
 int countcopy = count;
 if (count==50) {
 sleep(1);
 printf("%d,%d\n",count,countcopy);
 } // end if
 } // end task
 count--;
 } // end while
} // end single

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-task.html

the count variable
private to the thread creating the tasks,
will be firstprivate in the task,
preserving the value that was current

 when the task was created.

the firstprivate variable
initialized by the original value
when the parallel construct is encountered.

the lastprivate variable
updated after the end
of the parallel construct.

OpenMP Task (3A) 33 Young Won Lim
12/16/20

Task Dependency (1)

It is possible to put a partial ordering on tasks through use of the

#pragma omp task
 x = f()
#pragma omp task
 y = g(x)

it is conceivable that the second task is executed before the first,
possibly leading to an incorrect result. This is remedied by specifying:

#pragma omp task depend(out:x)
 x = f()
#pragma omp task depend(in:x)
 y = g(x)

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-task.html

OpenMP Task (3A) 34 Young Won Lim
12/16/20

Task Dependency (2)

for i in [1:N]:
 x[0,i] = some_function_of(i)
 x[i,0] = some_function_of(i)

for i in [1:N]:
 for j in [1:N]:
 x[i,j] = x[i-1,j]+x[i,j-1]

 Observe that the second loop nest is not amenable to OpenMP loop parallelism.
 Can you think of a way to realize the computation with OpenMP loop parallelism? Hint:
you need to rewrite the code so that the same operations are done in a different order.
 Use tasks with dependencies to make this code parallel without any rewriting: the only
change is to add OpenMP directives.

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-task.html

OpenMP Task (3A) 35 Young Won Lim
12/16/20

Task Dependency (3)

 Tasks dependencies are used to indicated how two uses of one data item relate to each
other. Since either use can be a read or a write, there are four types of dependencies.

[RaW (Read after Write)] The second task reads an item that the first task writes.
The second task has to be executed after the first:

 ... omp task depend(OUT:x)
 foo(x)
 ... omp task depend(IN:x)
 foo(x)

[WaR (Write after Read)] The first task reads and item, and the second task overwrites it.
The second task has to be executed second to prevent overwriting the initial value:

 ... omp task depend(IN:x)
 foo(x)
 ... omp task depend(OUT:x)
 foo(x)

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-task.html

OpenMP Task (3A) 36 Young Won Lim
12/16/20

Task Dependency (4)

[WaW (Write after Write)] Both tasks set the same variable.
Since the variable can be used by an intermediate task,
the two writes have to be executed in this order.

... omp task depend(OUT:x)
 foo(x)
... omp task depend(OUT:x)
 foo(x)

[RaR (Read after Read)] Both tasks read a variable.
Since neither tasks has an `out' declaration, they can run in either order.

... omp task depend(IN:x)
 foo(x)
... omp task depend(IN:x)
 foo(x)

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-task.html

OpenMP Task (3A) 37 Young Won Lim
12/16/20

Task Synchronization

even though the above segment looks like a linear set of statements,
it is impossible to say when the code after the task directive will be executed.
This means that the following code is incorrect:

 x = f();
#pragma omp task
 { y = g(x); }
 z = h(y);

Explanation: when the statement computing z is executed,
the task computing y has only been scheduled;
it has not necessarily been executed yet.

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-task.html

OpenMP Task (3A) 38 Young Won Lim
12/16/20

Task Synchronization

In order to have a guarantee that a task is finished,
you need the taskwait directive.
The following creates two tasks, which can be executed in parallel,
and then waits for the results:

#pragma omp parallel
#pragma omp single
{
 while (!tail(p)) {
 p = p->next();
#pragma omp task
 process(p)
 }
#pragma omp taskwait
}

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-task.html

OpenMP Task (3A) 39 Young Won Lim
12/16/20

Task Synchronization

You can indicate task dependencies in several ways:

Using the task wait directive
you can explicitly indicate the join of the forked tasks.
The instruction after the wait directive will therefore be
dependent on the spawned tasks.

The taskgroup directive, followed by a structured block,
ensures completion of all tasks created in the block, even if recursively created.

Each OpenMP task can have a clause,
indicating what data dependency of the task.
By indicating what data is produced or absorbed by the tasks,
the scheduler can construct the dependency graph for you.

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-task.html

OpenMP Task (3A) 40 Young Won Lim
12/16/20

Task group

a task group is a code block
that can contain task directives;

all these tasks need to be finished
before any statement after the block is executed.

A task group is somewhat similar
to having a taskwait directive after the block.

The big difference is that
that taskwait directive does not wait for tasks
that are recursively generated,
while a taskgroup does.

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-task.html

OpenMP Task (3A) 41 Young Won Lim
12/16/20

Taskloop (1)

The taskloop pragma is used to specify
that the iterations of one or more associated loops
are executed in parallel using OpenMP tasks.

The iterations are distributed across tasks
that are created by the construct and
scheduled to be executed.

https://www.ibm.com/support/knowledgecenter/SSXVZZ_16.1.1/com.ibm.xlcpp1611.lelinux.doc/compiler_ref/prag_omp_taskloop.html

OpenMP Task (3A) 42 Young Won Lim
12/16/20

Taskloop (2)

The taskloop construct generates as many as 20 tasks.
num_tasks(20)

The iterations of the for loop are distributed

among the tasks generated for the taskloop construct.

#pragma omp parallel
#pragma omp single // only one process performs taskloop
#pragma omp taskloop num_tasks(20)
 for (i=0; i<N; i++) {
 arr[i] = i*i;
 }

https://www.ibm.com/support/knowledgecenter/SSXVZZ_16.1.1/com.ibm.xlcpp1611.lelinux.doc/compiler_ref/prag_omp_taskloop.html

N/20 N/20 N/20 N/20

task 0 task 1 task 2 task 19

OpenMP Task (3A) 43 Young Won Lim
12/16/20

Taskloop (3)

#pragma omp parallel
#pragma omp single
#pragma omp taskloop num_tasks(20)
 for (i=0; i<N; i++) {
 arr[i] = i*i;
}

https://www.ibm.com/support/knowledgecenter/SSXVZZ_16.1.1/com.ibm.xlcpp1611.lelinux.doc/compiler_ref/prag_omp_taskloop.html

FORK

end taskloop

JOIN

single

taskloop

end single

OpenMP Task (3A) 44 Young Won Lim
12/16/20

taskwait

Completion of a subset of all explicit tasks bound to
a given parallel region may be specified
through the use of the taskwait directive.

The taskwait directive specifies a wait
on the completion of child tasks generated
since the beginning of the current (implicit or explicit) task.

Note that the taskwait directive specifies a wait
on the completion of direct children tasks,
not all descendant tasks.

https://docs.oracle.com/cd/E19205-01/820-7883/6nj43o69j/index.html

OpenMP Task (3A) 45 Young Won Lim
12/16/20

Tasking example

#include <stdio.h>
#include <omp.h>
int fib(int n)
{
 int i, j;
 if (n<2)
 return n;
 else
 {
 #pragma omp task shared(i) firstprivate(n)
 i=fib(n-1);

 #pragma omp task shared(j) firstprivate(n)
 j=fib(n-2);

 #pragma omp taskwait
 return i+j;
 }
}

https://docs.oracle.com/cd/E19205-01/820-7883/6nj43o69j/index.html

int main()
{
 int n = 10;

 omp_set_dynamic(0);
 omp_set_num_threads(4);

 #pragma omp parallel shared(n)
 {
 #pragma omp single
 printf ("fib(%d) = %d\n", n, fib(n));
 }
}

% CC -xopenmp -xO3 task_example.cc
% a.out
fib(10) = 55

OpenMP Task (3A) 46 Young Won Lim
12/16/20

Tasking example

The following C/C++ program illustrates
how the OpenMP task and taskwait directives
can be used to compute Fibonacci numbers recursively.

In the example, the parallel directive denotes
a parallel region which will be executed by four threads.

In the parallel construct, the single directive is used
to indicate that only one of the threads
will execute the print statement that calls fib(n).

https://docs.oracle.com/cd/E19205-01/820-7883/6nj43o69j/index.html

OpenMP Task (3A) 47 Young Won Lim
12/16/20

Tasking example

https://docs.oracle.com/cd/E19205-01/820-7883/6nj43o69j/index.html

fib(3) fib(2) fib(2) fib(1) fib(2) fib(1) fib(1) fib(0)

fib(4) fib(3) fib(3) fib(2)

fib(5) fib(4)

fib(5)

OpenMP Task (3A) 48 Young Won Lim
12/16/20

Tasking example

The call to fib(n) generates two tasks,
indicated by the task directive.

One of the tasks computes fib(n-1) and
the other computes fib(n-2),
and the return values are added together
to produce the value returned by fib(n).

Each of the calls to fib(n-1) and fib(n-2)
will in turn generate two tasks.

tasks will be recursively generated
until the argument passed to fib() is less than 2.

https://docs.oracle.com/cd/E19205-01/820-7883/6nj43o69j/index.html

#pragma omp task shared(i) firstprivate(n)
i=fib(n-1);

#pragma omp task shared(j) firstprivate(n)
j=fib(n-2);

#pragma omp taskwait
return i+j;

OpenMP Task (3A) 49 Young Won Lim
12/16/20

Tasking example

The taskwait directive ensures that
the two tasks generated
in an invocation of fib(n) are completed
(that is. the tasks compute i and j)
before that invocation of fib(n) returns.

Note that although only one thread
executes the single directive
and hence the call to fib(n),
all four threads will participate
in executing the tasks generated

https://docs.oracle.com/cd/E19205-01/820-7883/6nj43o69j/index.html

#pragma omp task shared(i) firstprivate(n)
i=fib(n-1);

#pragma omp task shared(j) firstprivate(n)
j=fib(n-2);

#pragma omp taskwait
return i+j;

OpenMP Task (3A) 50 Young Won Lim
12/16/20

taskloop

Int main (int argc, char* argv[])
{

#pragma omp parallel
{

#pragrma omp single
{

fib(input);
}

}

}

https://pop-coe.eu/sites/default/files/pop_files/pop-webinar-openmptasking.pdf

Int fib(int n)
{

if (n < 2) return n;
int x, y;

#pragma omp task shared(x)
{

x = fib(n-1);
}
#pragma omp task shared(y)
{

y = fib(n-2);
}
#pragma omp taskwait;
{

return x+y;
}

OpenMP Task (3A) 51 Young Won Lim
12/16/20

References

[1] en.wikipedia.org
[2] M Harris, http://beowulf.lcs.mit.edu/18.337-2008/lectslides/scan.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

