CMOS Delay-9 (H.0)
Interconnect Delay

.

20170121

•

Copyright (c) 2015 - 2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

References

.

Some Figures from the following sites

[1] http://pages.hmc.edu/harris/cmosvlsi/4e/index.html Weste & Harris Book Site

[2] en.wikipedia.org

 Current in a wire is analogous to current in a pipe Resistance: narrow size impedes flow Capacitance: trough under the leaky pipe must fill first Inductance: paddle wheel inertia opposes changes in flow rate Negligible for most wires 	In	ntercon	nect N	Modeli	ng
14: Wires CMOS VLSI Design ^{4th Ed.} 7	Curre – Re – Ca – Ind	ent in a wire is anal esistance: narrow apacitance: trough ductance: paddle Negligible for mo wires	logous to curre size impedes a under the lea wheel inertia d ost	rent in a pipe flow aky pipe must f opposes chang Water Wheel: Induct Water Wheel: Induct Pipe: Resistance Pipe: Resistance Trough: Capacitance	III first es in flow rate
	14: Wires		CMOS VLSI Desigr	n 4th Ed.	7

•

-		
 Wires are a Approxim R C R C 3-segment n L-model need Use single s 	distributed system nate with lumped element model N segments $rac region regions regions regions regions regions regions regions regions regions for same a region region region regions for same a segment \pi-model for Elmore$	simulation accuracy!
 14: Wires		8

 Diffusion capacitance is very high (1-2 fF/µm) Comparable to gate capacitance Diffusion also has high resistance Avoid using diffusion <i>runners</i> for wires! Polysilicon has lower C but high R Use for transistor gates Occasionally for very short wires between gates 14: Wires CMOS VLSI Design 4th Ed. 18 	 Diffusion capacitance is very high (1-2 fF/µm) Comparable to gate capacitance Diffusion also has high resistance Avoid using diffusion <i>runners</i> for wires! Polysilicon has lower C but high R Use for transistor gates Occasionally for very short wires between gates 14: Wires CMOS VLSI Design 40124. 18 	 Diffusion capacitance is very high (1-2 fF/μm) Comparable to gate capacitance Diffusion also has high resistance Avoid using diffusion <i>runners</i> for wires! Polysilicon has lower C but high R Use for transistor gates Occasionally for very short wires between gates 14: Wires CMOS VLSI Design 40.54 18 	 Diffusion capacitance is very high (1-2 fF/µm) Comparable to gate capacitance Diffusion also has high resistance Avoid using diffusion <i>runners</i> for wires! Polysilicon has lower C but high R Use for transistor gates Occasionally for very short wires between gates 14: Wires CMOS VLSI Design 40022 (1998) 	 Diffusion capacitance is very high (1-2 fF/µm) Comparable to gate capacitance Diffusion also has high resistance Avoid using diffusion <i>runners</i> for wires! Polysilicon has lower C but high R Use for transistor gates Occasionally for very short wires between gates 14: Wires CMOS VLSI Design 4064 	Diffusion & Polysilicon	
14: Wires CMOS VLSI Design ^{4th Ed.} 18	14: Wires CMOS VLSI Design 4th Ed. 18	14: Wires CMOS VLSI Design 4th Ed. 18	14: Wires CMOS VLSI Design 4th Ed. 18	14: Wires CMOS VLSI Design 4th Ed. 18	 Diffusion capacitance is very high (1-2 fF/μm) Comparable to gate capacitance Diffusion also has high resistance Avoid using diffusion <i>runners</i> for wires! Polysilicon has lower C but high R Use for transistor gates Occasionally for very short wires between gate 	s
					A: Wires CMOS VI SI Design 4th Ed.	19

-

 * A Step tapered wire
* A tree with sized segments
* Varieties of wiring trees
* Steiner Tree
* Wire Sizing

