
Young Won Lim
8/16/13

Type Cast (1A)

Young Won Lim
8/16/13

 Copyright (c) 2011-2013 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Type Cast 3 Young Won Lim
8/16/13

Dynamic Cast

func()

func()

func()

PolyObj

RectObj

p can be determined at run time

p

pp

func()

func()

CircleObj
p

compile time

void foo(Poly * p) {

 Rect *RectPointer;
 Circle *CirclePointer;

 RectPointer = dynamic_cast <Rect> (p);

 if (RectPointer != NULL) {

 }

 CirclePointer = dynamic_cast <Circle> (p);

 if (CirclePointer != NULL) {

 }

}

 do specific things pertain to Rect

 do specific things pertain to Circle

Type Cast 4 Young Won Lim
8/16/13

static_cast & reinterpret_cast (1)

Static Cast

Converts between pointers
to related classes

derived classes the base class

No safety check during run time

can remove the overhead of run time
type checking

non-pointer conversion: standard
conversion between fundamental types

Reinterpret Cast

Converts any pointer type to any other
pointer type, even of unrelated classes.

All pointer conversions

No check

class A {
public:
 int x;
 int y;
};

class B {
public:
 float x;
};

int main(void) {
 A * a = new A;
 a->x = 10;
 a->y = 20;

 B * b = reinterpret_cast<B*>(a);
 // B * b = static_cast<B*>(a); error

 cout << a << endl;
 cout << b << endl;
 cout << b->x << endl;

 return 0;
}

Type Cast 5 Young Won Lim
8/16/13

static_cast & reinterpret_cast (2)

int *a = new int();
char *b = static_cast<char*>(a);
int *c = static_cast<int*>(b);

(int *) a

(void *) b
(int *) c

int *a = new int();
char *b = reinterpret_cast<char*>(a);
int *c = reinterpret_cast<int*>(b);

(int *) a

(int *) c

(int *) a

(void *) b
(int *) c

(int *) a

(char *) b
(int *) c

static_casting a pointer to and from void* preserves the address.

reinterpret_cast only guarantees that
if you cast a pointer to a different type,
and then reinterpret_cast it back to the original type,
you get the original value.

(char *) b ?

Type Cast 6 Young Won Lim
8/16/13

reinterpret_cast

Reinterpret Cast

pointers integer types

platform-specific, non-portable

a pointer cast to an integer type large
enough to fully contain it, is granted to
be able to be cast back to a valid
pointer.

platform specific low-level operations

(static cast X)

 int *a = new int(1);
 char *b = reinterpret_cast<char*>(a);
 int *c = reinterpret_cast<int*>(b);

 printf("%d %x \n", *a, *a);
 printf("%d %x \n", *b, *b);
 printf("%d %x \n", *c, *c);

 cout << a << endl;
 cout << b << endl;
 cout << c << endl;

 int n = reinterpret_cast<int> (a);
 int* pointer = reinterpret_cast<int*>(n);

 cout << *pointer << endl;

int * p =
reinterpret_cast<int*>(0x01020304);

Type Cast 7 Young Won Lim
8/16/13

const_cast

int main (void) {

 const char * const p = "abcde";
 char *q;

 q = const_cast<char *> (p);

 cout << p << endl;

 // *(q+2) = 'X';
 cout << q << endl;

 char s[10] = "XYZ";

 p = const_cast<char *> (s);
 // p = s;
 cout << p << endl;

 return 0;
}

Young Won Lim
8/16/13

References

[1] W Savitch, “Absolute C++”
[2] P.S. Wang, “Standard C++ with objected-oriented programming”
[3] http://www.cplusplus.com
[4] http://stackoverflow.com documents

http://www.cplusplus.com/
http://stackoverflow.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

