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LTI system theory
Linear time-invariant theory, commonly known as LTI system theory, comes from applied mathematics and has
direct applications in NMR spectroscopy, seismology, circuits, signal processing, control theory, and other technical
areas. It investigates the response of a linear and time-invariant system to an arbitrary input signal. Trajectories of
these systems are commonly measured and tracked as they move through time (e.g., an acoustic waveform), but in
applications like image processing and field theory, the LTI systems also have trajectories in spatial dimensions.
Thus, these systems are also called linear translation-invariant to give the theory the most general reach. In the case
of generic discrete-time (i.e., sampled) systems, linear shift-invariant is the corresponding term. A good example of
LTI systems are electrical circuits that can be made up of resistors, capacitors, and inductors.[1]

Overview
The defining properties of any LTI system are linearity and time invariance.
• Linearity means that the relationship between the input and the output of the system is a linear map: If input

produces response and input produces response then the scaled and summed input
produces the scaled and summed response where and are real

scalars. It follows that this can be extended to an arbitrary number of terms, and so for real numbers
,

Input      produces output   

In particular,

Input      produces output   (Eq.1)

where and are scalars and inputs that vary over a continuum indexed by . Thus if an input function
can be represented by a continuum of input functions, combined "linearly", as shown, then the corresponding
output function can be represented by the corresponding continuum of output functions, scaled and summed in
the same way.

• Time invariance means that whether we apply an input to the system now or T seconds from now, the output will
be identical except for a time delay of the T seconds. That is, if the output due to input is , then the
output due to input is . Hence, the system is time invariant because the output does not
depend on the particular time the input is applied.

The fundamental result in LTI system theory is that any LTI system can be characterized entirely by a single
function called the system's impulse response. The output of the system is simply the convolution of the input to the
system with the system's impulse response. This method of analysis is often called the time domain point-of-view.
The same result is true of discrete-time linear shift-invariant systems in which signals are discrete-time samples, and
convolution is defined on sequences.
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Relationship between the time domain and the frequency domain

Equivalently, any LTI system can be
characterized in the frequency domain
by the system's transfer function, which
is the Laplace transform of the system's
impulse response (or Z transform in the
case of discrete-time systems). As a
result of the properties of these
transforms, the output of the system in
the frequency domain is the product of
the transfer function and the transform
of the input. In other words,
convolution in the time domain is
equivalent to multiplication in the
frequency domain.

For all LTI systems, the eigenfunctions,
and the basis functions of the
transforms, are complex exponentials.
This is, if the input to a system is the complex waveform for some complex amplitude and complex
frequency , the output will be some complex constant times the input, say for some new complex amplitude

. The ratio is the transfer function at frequency .
Because sinusoids are a sum of complex exponentials with complex-conjugate frequencies, if the input to the system
is a sinusoid, then the output of the system will also be a sinusoid, perhaps with a different amplitude and a different
phase, but always with the same frequency upon reaching steady-state. LTI systems cannot produce frequency
components that are not in the input.
LTI system theory is good at describing many important systems. Most LTI systems are considered "easy" to
analyze, at least compared to the time-varying and/or nonlinear case. Any system that can be modeled as a linear
homogeneous differential equation with constant coefficients is an LTI system. Examples of such systems are
electrical circuits made up of resistors, inductors, and capacitors (RLC circuits). Ideal spring–mass–damper systems
are also LTI systems, and are mathematically equivalent to RLC circuits.
Most LTI system concepts are similar between the continuous-time and discrete-time (linear shift-invariant) cases. In
image processing, the time variable is replaced with two space variables, and the notion of time invariance is
replaced by two-dimensional shift invariance. When analyzing filter banks and MIMO systems, it is often useful to
consider vectors of signals.
A linear system that is not time-invariant can be solved using other approaches such as the Green function method.
The same method must be used when the initial conditions of the problem are not null.
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Continuous-time systems

Impulse response and convolution
The behavior of a linear, continuous-time, time-invariant system with input signal x(t) and output signal y(t) is
described by the convolution integral,[2] :

       (using commutativity)

where is the system's response to an impulse:      is therefore proportional to a weighted average
of the input function   The weighting function is simply shifted by amount    As changes, the
weighting function emphasizes different parts of the input function. When is zero for all negative   
depends only on values of prior to time   and the system is said to be causal.
To understand why the convolution produces the output of an LTI system, let the notation represent the
function with variable and constant   And let the shorter notation represent Then a
continuous-time system transforms an input function, into an output function,   And in general, every value
of the output can depend on every value of the input. This concept is represented by:

where is the transformation operator for time   In a typical system, depends most heavily on the values of
that occurred near time   Unless the transform itself changes with the output function is just constant, and the

system is uninteresting.
For a linear system, must satisfy Eq.1:

(Eq.2)

And the time-invariance requirement is:

(Eq.3)

In this notation, we can write the impulse response as   
Similarly:

       (using Eq.3)

Substituting this result into the convolution integral:

which has the form of the right side of Eq.2 for the case and 
Eq.2 then allows this continuation:
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In summary, the input function,   can be represented by a continuum of time-shifted impulse functions,
combined "linearly", as shown at Eq.1. The system's linearity property allows the system's response to be
represented by the corresponding continuum of impulse responses, combined in the same way.  And the
time-invariance property allows that combination to be represented by the convolution integral.
The mathematical operations above have a simple graphical simulation.[3]

Exponentials as eigenfunctions
An eigenfunction is a function for which the output of the operator is a scaled version of the same function. That is,

,
where f is the eigenfunction and is the eigenvalue, a constant.

The exponential functions , where , are eigenfunctions of a linear, time-invariant operator. A
simple proof illustrates this concept. Suppose the input is . The output of the system with impulse
response is then

which, by the commutative property of convolution, is equivalent to

where the scalar

is dependent only on the parameter s.

So the system's response is a scaled version of the input. In particular, for any , the system output is the
product of the input and the constant . Hence, is an eigenfunction of an LTI system, and the
corresponding eigenvalue is .
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Direct proof

It is also possible to directly derive complex exponentials as eigenfunctions of LTI systems.

Let's set some complex exponential and a time-shifted version of it.
by linearity with respect to the constant .
by time invariance of .

So . Setting and renamming we get :

i.e. that a complex exponential as input will give a complex exponential of same frequency as output.

Fourier and Laplace transforms
The eigenfunction property of exponentials is very useful for both analysis and insight into LTI systems. The
Laplace transform

is exactly the way to get the eigenvalues from the impulse response. Of particular interest are pure sinusoids (i.e.,
exponential functions of the form where and ). These are generally called complex

exponentials even though the argument is purely imaginary. The Fourier transform gives the
eigenvalues for pure complex sinusoids. Both of and are called the system function, system

response, or transfer function.
The Laplace transform is usually used in the context of one-sided signals, i.e. signals that are zero for all values of t
less than some value. Usually, this "start time" is set to zero, for convenience and without loss of generality, with the
transform integral being taken from zero to infinity (the transform shown above with lower limit of integration of
negative infinity is formally known as the bilateral Laplace transform).
The Fourier transform is used for analyzing systems that process signals that are infinite in extent, such as modulated
sinusoids, even though it cannot be directly applied to input and output signals that are not square integrable. The
Laplace transform actually works directly for these signals if they are zero before a start time, even if they are not
square integrable, for stable systems. The Fourier transform is often applied to spectra of infinite signals via the
Wiener–Khinchin theorem even when Fourier transforms of the signals do not exist.
Due to the convolution property of both of these transforms, the convolution that gives the output of the system can
be transformed to a multiplication in the transform domain, given signals for which the transforms exist

Not only is it often easier to do the transforms, multiplication, and inverse transform than the original convolution,
but one can also gain insight into the behavior of the system from the system response. One can look at the modulus
of the system function |H(s)| to see whether the input is passed (let through) the system or rejected or
attenuated by the system (not let through).
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Examples
• A simple example of an LTI operator is the derivative.

•    (i.e., it is linear)

•    (i.e., it is time invariant)

When the Laplace transform of the derivative is taken, it transforms to a simple multiplication by the Laplace
variable s.

That the derivative has such a simple Laplace transform partly explains the utility of the transform.
•• Another simple LTI operator is an averaging operator

By the linearity of integration,

it is linear. Additionally, because

it is time invariant. In fact, can be written as a convolution with the boxcar function . That is,

where the boxcar function
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Important system properties
Some of the most important properties of a system are causality and stability. Causality is a necessity if the
independent variable is time, but not all systems have time as an independent variable. For example, a system that
processes still images does not need to be causal. Non-causal systems can be built and can be useful in many
circumstances. Even non-real systems can be built and are very useful in many contexts.

Causality

Main article: Causal system
A system is causal if the output depends only on present and past, but not future inputs. A necessary and sufficient
condition for causality is

where is the impulse response. It is not possible in general to determine causality from the Laplace transform,
because the inverse transform is not unique. When a region of convergence is specified, then causality can be
determined.

Stability

Main article: BIBO stability
A system is bounded-input, bounded-output stable (BIBO stable) if, for every bounded input, the output is finite.
Mathematically, if every input satisfying

leads to an output satisfying

(that is, a finite maximum absolute value of implies a finite maximum absolute value of ), then the
system is stable. A necessary and sufficient condition is that , the impulse response, is in L1 (has a finite L1

norm):

In the frequency domain, the region of convergence must contain the imaginary axis .
As an example, the ideal low-pass filter with impulse response equal to a sinc function is not BIBO stable, because
the sinc function does not have a finite L1 norm. Thus, for some bounded input, the output of the ideal low-pass filter
is unbounded. In particular, if the input is zero for and equal to a sinusoid at the cut-off frequency for 
, then the output will be unbounded for all times other than the zero crossings.

Discrete-time systems
Almost everything in continuous-time systems has a counterpart in discrete-time systems.

Discrete-time systems from continuous-time systems
In many contexts, a discrete time (DT) system is really part of a larger continuous time (CT) system. For example, a
digital recording system takes an analog sound, digitizes it, possibly processes the digital signals, and plays back an
analog sound for people to listen to.

Formally, the DT signals studied are almost always uniformly sampled versions of CT signals. If is a CT
signal, then an analog to digital converter will transform it to the DT signal:
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where T is the sampling period. It is very important to limit the range of frequencies in the input signal for faithful
representation in the DT signal, since then the sampling theorem guarantees that no information about the CT signal
is lost. A DT signal can only contain a frequency range of ; other frequencies are aliased to the same range.

Impulse response and convolution

Let represent the sequence .
And let the shorter notation represent 
A discrete system transforms an input sequence, into an output sequence, In general, every element of
the output can depend on every element of the input. Representing the transformation operator by , we can write:

Note that unless the transform itself changes with n, the output sequence is just constant, and the system is
uninteresting. (Thus the subscript, n.) In a typical system, y[n] depends most heavily on the elements of x whose
indices are near n.

For the special case of the Kronecker delta function, the output sequence is the impulse response:

For a linear system, must satisfy:

(Eq.4)

And the time-invariance requirement is:

(Eq.5)

In such a system, the impulse response, characterizes the system completely. I.e., for any input sequence, the
output sequence can be calculated in terms of the input and the impulse response. To see how that is done, consider
the identity:

which expresses in terms of a sum of weighted delta functions.
Therefore:

where we have invoked Eq.4 for the case and 
And because of Eq.5, we may write:

Therefore:
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       (commutativity)

which is the familiar discrete convolution formula. The operator can therefore be interpreted as proportional to a
weighted average of the function x[k]. The weighting function is h[-k], simply shifted by amount n. As n changes,
the weighting function emphasizes different parts of the input function. Equivalently, the system's response to an
impulse at n=0 is a "time" reversed copy of the unshifted weighting function. When h[k] is zero for all negative k,
the system is said to be causal.

Exponentials as eigenfunctions
An eigenfunction is a function for which the output of the operator is the same function, just scaled by some amount.
In symbols,

,
where f is the eigenfunction and is the eigenvalue, a constant.
The exponential functions , where , are eigenfunctions of a linear, time-invariant operator.

is the sampling interval, and . A simple proof illustrates this concept.
Suppose the input is . The output of the system with impulse response is then

which is equivalent to the following by the commutative property of convolution

where

is dependent only on the parameter z.
So is an eigenfunction of an LTI system because the system response is the same as the input times the constant

.

Z and discrete-time Fourier transforms
The eigenfunction property of exponentials is very useful for both analysis and insight into LTI systems. The Z
transform

is exactly the way to get the eigenvalues from the impulse response. Of particular interest are pure sinusoids, i.e.
exponentials of the form , where . These can also be written as with . These are
generally called complex exponentials even though the argument is purely imaginary. The Discrete-time Fourier
transform (DTFT) gives the eigenvalues of pure sinusoids. Both of and are
called the system function, system response, or transfer function'.
The Z transform is usually used in the context of one-sided signals, i.e. signals that are zero for all values of t less
than some value. Usually, this "start time" is set to zero, for convenience and without loss of generality. The Fourier
transform is used for analyzing signals that are infinite in extent.
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Due to the convolution property of both of these transforms, the convolution that gives the output of the system can
be transformed to a multiplication in the transform domain. That is,

Just as with the Laplace transform transfer function in continuous-time system analysis, the Z transform makes it
easier to analyze systems and gain insight into their behavior. One can look at the modulus of the system function
|H(z)| to see whether the input is passed (let through) by the system, or rejected or attenuated by the system (not
let through).

Examples

• A simple example of an LTI operator is the delay operator .

•    (i.e., it is linear)
•    (i.e., it is time invariant)

The Z transform of the delay operator is a simple multiplication by z-1. That is,

•• Another simple LTI operator is the averaging operator

.

Because of the linearity of sums,

and so it is linear. Because,

it is also time invariant.

Important system properties

The input-output characteristics of discrete-time LTI system are completely described by its impulse response .
Some of the most important properties of a system are causality and stability. Unlike CT systems, non-causal DT
systems can be realized. It is trivial to make an acausal FIR system causal by adding delays. It is even possible to
make acausal IIR systems.[4] Non-stable systems can be built and can be useful in many circumstances. Even
non-real systems can be built and are very useful in many contexts.
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Causality

Main article: Causal system
A discrete-time LTI system is causal if the current value of the output depends on only the current value and past
values of the input.,[5] A necessary and sufficient condition for causality is

where is the impulse response. It is not possible in general to determine causality from the Z transform,
because the inverse transform is not unique. When a region of convergence is specified, then causality can be
determined.

Stability

Main article: BIBO stability
A system is bounded input, bounded output stable (BIBO stable) if, for every bounded input, the output is finite.
Mathematically, if

implies that

(that is, if bounded input implies bounded output, in the sense that the maximum absolute values of and 
are finite), then the system is stable. A necessary and sufficient condition is that , the impulse response,
satisfies

In the frequency domain, the region of convergence must contain the unit circle (i.e., the locus satisfying 
for complex z).

Notes
[1][1] Hespanha 2009, p. 78.
[2][2] Crutchfield[web]
[3][3] Crutchfield
[4][4] Vaidyanathan,1995
[5][5] Phillips 2007, p. 508.
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Further reading
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External links
• ECE 209: Review of Circuits as LTI Systems (http:/ / www. tedpavlic. com/ teaching/ osu/ ece209/ support/

circuits_sys_review. pdf) – Short primer on the mathematical analysis of (electrical) LTI systems.
• ECE 209: Sources of Phase Shift (http:/ / www. tedpavlic. com/ teaching/ osu/ ece209/ lab3_opamp_FO/

lab3_opamp_FO_phase_shift. pdf) – Gives an intuitive explanation of the source of phase shift in two common
electrical LTI systems.

• JHU 520.214 Signals and Systems course notes (http:/ / www. ece. jhu. edu/ ~cooper/ courses/ 214/
signalsandsystemsnotes. pdf). An encapsulated course on LTI system theory. Adequate for self teaching.

Transfer function
In engineering, a transfer function (also known as the system function[1] or network function and, when plotted as
a graph, transfer curve) is a mathematical representation, in terms of spatial or temporal frequency, of the relation
between the input and output of a linear time-invariant system with zero initial conditions and zero-point
equilibrium.[2] With optical imaging devices, for example, it is the Fourier transform of the point spread function
(hence a function of spatial frequency) i.e. the intensity distribution caused by a point object in the field of view.

Explanation
Transfer functions are commonly used in the analysis of systems such as single-input single-output filters, typically
within the fields of signal processing, communication theory, and control theory. The term is often used exclusively
to refer to linear, time-invariant systems (LTI), as covered in this article. Most real systems have non-linear
input/output characteristics, but many systems, when operated within nominal parameters (not "over-driven") have
behavior that is close enough to linear that LTI system theory is an acceptable representation of the input/output
behavior.
The descriptions below are given in terms of a complex variable, s = σ + j*ω, which bears a brief explanation. In
many applications, it is sufficient to define σ=0 (and s = j*ω), which reduces the Laplace transforms with complex
arguments to Fourier transforms with real argument ω. The applications where this is common are ones where there
is interest only in the steady-state response of an LTI system, not the fleeting turn-on and turn-off behaviors or
stability issues. That is usually the case for signal processing and communication theory.

Thus, for continuous-time input signal and output , the transfer function is the linear mapping of
the Laplace transform of the input, , to the Laplace transform of the output

:

or

.
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In discrete-time systems, the relation between an input signal and output is dealt with using the

z-transform, and then the transfer function is similarly written as and this is often referred to as the

pulse-transfer function.Wikipedia:Citation needed

Direct derivation from differential equations
Consider a linear differential equation with constant coefficients

where u and r are suitably smooth functions of t, and L is the operator defined on the relevant function space, that
transforms u into r. That kind of equation can be used to constrain the output function u in terms of the forcing
function r. The transfer function, written as an operator , is the right inverse of L, since .

Solutions of the homogeneous, constant-coefficient differential equation can be found by trying
. That substitution yields the characteristic polynomial

The inhomogeneous case can be easily solved if the input function r is also of the form . In that case, by
substituting one finds that if and only if

Taking that as the definition of the transfer function requires careful disambiguation between complex vs. real
values, which is traditionally influenced by the interpretation of abs(H(s)) as the gain and -atan(H(s)) as the phase
lag. Other definitions of the transfer function are used: for example 

Signal processing
Let be the input to a general linear time-invariant system, and be the output, and the bilateral Laplace
transform of and be

.

Then the output is related to the input by the transfer function as

and the transfer function itself is therefore

.

In particular, if a complex harmonic signal with a sinusoidal component with amplitude , angular frequency 
and phase 

where 
is input to a linear time-invariant system, then the corresponding component in the output is:
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Note that, in a linear time-invariant system, the input frequency has not changed, only the amplitude and the
phase angle of the sinusoid has been changed by the system. The frequency response describes this change
for every frequency in terms of gain:

and phase shift:

.
The phase delay (i.e., the frequency-dependent amount of delay introduced to the sinusoid by the transfer function)
is:

.

The group delay (i.e., the frequency-dependent amount of delay introduced to the envelope of the sinusoid by the
transfer function) is found by computing the derivative of the phase shift with respect to angular frequency ,

.

The transfer function can also be shown using the Fourier transform which is only a special case of the bilateral
Laplace transform for the case where .

Common transfer function families
While any LTI system can be described by some transfer function or another, there are certain "families" of special
transfer functions that are commonly used. Typical infinite impulse response filters are designed to implement one of
these special transfer functions.
Some common transfer function families and their particular characteristics are:
• Butterworth filter – maximally flat in passband and stopband for the given order
• Chebyshev filter (Type I) – maximally flat in stopband, sharper cutoff than Butterworth of same order
• Chebyshev filter (Type II) – maximally flat in passband, sharper cutoff than Butterworth of same order
• Bessel filter – best pulse response for a given order because it has no group delay ripple
• Elliptic filter – sharpest cutoff (narrowest transition between pass band and stop band) for the given order
•• Optimum "L" filter
• Gaussian filter – minimum group delay; gives no overshoot to a step function.
•• Hourglass filter
•• Raised-cosine filter

Control engineering
In control engineering and control theory the transfer function is derived using the Laplace transform.
The transfer function was the primary tool used in classical control engineering. However, it has proven to be
unwieldy for the analysis of multiple-input multiple-output (MIMO) systems, and has been largely supplanted by
state space representations for such systems. In spite of this, a transfer matrix can be always obtained for any linear
system, in order to analyze its dynamics and other properties: each element of a transfer matrix is a transfer function
relating a particular input variable to an output variable.
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Optics
In optics, modulation transfer function indicates the capability of optical contrast transmission.
For example, when observing a series of black-white-light fringes drawn with a specific spatial frequency, the image
quality may decay. White fringes fade while black ones turn brighter.
The modulation transfer function in a specific spatial frequency is defined by:

Where modulation (M) is computed from the following image or light brightness:

References
[1] Bernd Girod, Rudolf Rabenstein, Alexander Stenger, Signals and systems, 2nd ed., Wiley, 2001, ISBN 0-471-98800-6 p. 50
[2][2] The Oxford Dictionary of English, 3rd ed., "Transfer function"

External links
• Transfer function (http:/ / planetmath. org/ ?op=getobj& amp;from=objects& amp;id=5394) at PlanetMath.org.
• ECE 209: Review of Circuits as LTI Systems (http:/ / www. tedpavlic. com/ teaching/ osu/ ece209/ support/

circuits_sys_review. pdf) — Short primer on the mathematical analysis of (electrical) LTI systems.
• ECE 209: Sources of Phase Shift (http:/ / www. tedpavlic. com/ teaching/ osu/ ece209/ lab3_opamp_FO/

lab3_opamp_FO_phase_shift. pdf) — Gives an intuitive explanation of the source of phase shift in two simple
LTI systems. Also verifies simple transfer functions by using trigonometric identities.

• Transfer function model in Mathematica (http:/ / reference. wolfram. com/ mathematica/ ref/
TransferFunctionModel. html)
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Step response

A typical step response for a second order system, illustrating overshoot, followed
by ringing, all subsiding within a settling time.

The step response of a system in a given
initial state consists of the time evolution of
its outputs when its control inputs are
Heaviside step functions. In electronic
engineering and control theory, step
response is the time behaviour of the outputs
of a general system when its inputs change
from zero to one in a very short time. The
concept can be extended to the abstract
mathematical notion of a dynamical system
using an evolution parameter.

From a practical standpoint, knowing how
the system responds to a sudden input is
important because large and possibly fast
deviations from the long term steady state
may have extreme effects on the component
itself and on other portions of the overall system dependent on this component. In addition, the overall system cannot
act until the component's output settles down to some vicinity of its final state, delaying the overall system response.
Formally, knowing the step response of a dynamical system gives information on the stability of such a system, and
on its ability to reach one stationary state when starting from another.

Time domain versus frequency domain
Instead of frequency response, system performance may be specified in terms of parameters describing
time-dependence of response. The step response can be described by the following quantities related to its time
behavior,
•• overshoot
•• rise time
•• settling time
•• ringing
In the case of linear dynamic systems, much can be inferred about the system from these characteristics. Below the
step response of a simple two-pole amplifier is presented, and some of these terms are illustrated.
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Step response of feedback amplifiers

Figure 1: Ideal negative feedback model; open loop gain is AOL and feedback factor
is β.

This section describes the step response of a
simple negative feedback amplifier shown
in Figure 1. The feedback amplifier consists
of a main open-loop amplifier of gain AOL
and a feedback loop governed by a
feedback factor β. This feedback amplifier
is analyzed to determine how its step
response depends upon the time constants
governing the response of the main
amplifier, and upon the amount of feedback
used.

Analysis
A negative feedback amplifier has gain given by (see negative feedback amplifier):

where AOL = open-loop gain, AFB = closed-loop gain (the gain with negative feedback present) and β = feedback
factor. The step response of such an amplifier is easily handled in the case that the open-loop gain has two poles
(two time constants, τ1, τ2), that is, the open-loop gain is given by:

with zero-frequency gain A0 and angular frequency ω = 2πf, which leads to the closed-loop gain:

 • 

Figure 2: Conjugate pole locations for a two-pole feedback amplifier;
Re(s) = real axis and Im(s) = imaginary axis.

The time dependence of the amplifier is easy to
discover by switching variables to s = jω, whereupon
the gain becomes:

 • 

The poles of this expression (that is, the zeros of the
denominator) occur at:

which shows for large enough values of βA0 the square
root becomes the square root of a negative number, that
is the square root becomes imaginary, and the pole
positions are complex conjugate numbers, either s+ or
s−; see Figure 2:
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with

and

Using polar coordinates with the magnitude of the radius to the roots given by |s| (Figure 2):

and the angular coordinate φ is given by:

Tables of Laplace transforms show that the time response of such a system is composed of combinations of the two
functions:

 
which is to say, the solutions are damped oscillations in time. In particular, the unit step response of the system is:

which simplifies to

when AOL tends to infinity and the feedback factor is one.
Notice that the damping of the response is set by ρ, that is, by the time constants of the open-loop amplifier. In
contrast, the frequency of oscillation is set by μ, that is, by the feedback parameter through βA0. Because ρ is a sum
of reciprocals of time constants, it is interesting to notice that ρ is dominated by the shorter of the two.

https://en.wikipedia.org/w/index.php?title=Laplace_transforms
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Results

Figure 3: Step-response of a linear two-pole feedback amplifier; time is in units of 1/ρ,
that is, in terms of the time constants of AOL; curves are plotted for three values of

mu = μ, which is controlled by β.

Figure 3 shows the time response to a
unit step input for three values of the
parameter μ. It can be seen that the
frequency of oscillation increases with
μ, but the oscillations are contained
between the two asymptotes set by the
exponentials [ 1 − exp (−ρt) ] and
[ 1 + exp(−ρt) ]. These asymptotes are
determined by ρ and therefore by the
time constants of the open-loop
amplifier, independent of feedback.

The phenomena of oscillation about
final value is called ringing. The
overshoot is the maximum swing
above final value, and clearly increases
with μ. Likewise, the undershoot is
the minimum swing below final value,
again increasing with μ. The settling
time is the time for departures from
final value to sink below some
specified level, say 10% of final value.

The dependence of settling time upon
μ is not obvious, and the
approximation of a two-pole system
probably is not accurate enough to make any real-world conclusions about feedback dependence of settling time.
However, the asymptotes [ 1 − exp (−ρt) ] and [ 1 + exp (−ρt) ] clearly impact settling time, and they are controlled
by the time constants of the open-loop amplifier, particularly the shorter of the two time constants. That suggests that
a specification on settling time must be met by appropriate design of the open-loop amplifier.

The two major conclusions from this analysis are:
1. Feedback controls the amplitude of oscillation about final value for a given open-loop amplifier and given values

of open-loop time constants, τ1 and τ2.
2.2. The open-loop amplifier decides settling time. It sets the time scale of Figure 3, and the faster the open-loop

amplifier, the faster this time scale.
As an aside, it may be noted that real-world departures from this linear two-pole model occur due to two major
complications: first, real amplifiers have more than two poles, as well as zeros; and second, real amplifiers are
nonlinear, so their step response changes with signal amplitude.
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Figure 4: Step response for three values of α. Top: α  = 4; Center: α = 2;
Bottom: α = 0.5. As α is reduced the pole separation reduces, and the

overshoot increases.

Control of overshoot

How overshoot may be controlled by appropriate
parameter choices is discussed next.
Using the equations above, the amount of overshoot
can be found by differentiating the step response and
finding its maximum value. The result for maximum
step response Smax is:

The final value of the step response is 1, so the
exponential is the actual overshoot itself. It is clear
the overshoot is zero if μ = 0, which is the condition:

This quadratic is solved for the ratio of time
constants by setting x = ( τ1 / τ2 )

1 / 2 with the result

Because β A0 >> 1, the 1 in the square root can be
dropped, and the result is

In words, the first time constant must be much larger
than the second. To be more adventurous than a
design allowing for no overshoot we can introduce a factor α in the above relation:

and let α be set by the amount of overshoot that is acceptable.
Figure 4 illustrates the procedure. Comparing the top panel (α = 4) with the lower panel (α = 0.5) shows lower
values for α increase the rate of response, but increase overshoot. The case α = 2 (center panel) is the maximally flat
design that shows no peaking in the Bode gain vs. frequency plot. That design has the rule of thumb built-in safety
margin to deal with non-ideal realities like multiple poles (or zeros), nonlinearity (signal amplitude dependence) and
manufacturing variations, any of which can lead to too much overshoot. The adjustment of the pole separation (that
is, setting α) is the subject of frequency compensation, and one such method is pole splitting.

Control of settling time
The amplitude of ringing in the step response in Figure 3 is governed by the damping factor exp ( −ρ t ). That is, if
we specify some acceptable step response deviation from final value, say Δ, that is:

this condition is satisfied regardless of the value of β AOL provided the time is longer than the settling time, say tS,
given by:[1]

https://en.wikipedia.org/w/index.php?title=File%3AOvershoot_control.PNG
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where the approximation τ1 >> τ2 is applicable because of the overshoot control condition, which makes τ1 = αβAOL
τ2. Often the settling time condition is referred to by saying the settling period is inversely proportional to the unity
gain bandwidth, because 1/(2π τ2) is close to this bandwidth for an amplifier with typical dominant pole
compensation. However, this result is more precise than this rule of thumb. As an example of this formula, if
Δ = 1/e4 = 1.8 %, the settling time condition is tS = 8 τ2.
In general, control of overshoot sets the time constant ratio, and settling time tS sets τ2. [2]

Phase margin

Figure 5: Bode gain plot to find phase margin; scales are logarithmic, so
labeled separations are multiplicative factors. For example, f0 dB = βA0 × f1.

Next, the choice of pole ratio τ1/τ2 is related to
the phase margin of the feedback amplifier.[3]

The procedure outlined in the Bode plot article is
followed. Figure 5 is the Bode gain plot for the
two-pole amplifier in the range of frequencies up
to the second pole position. The assumption
behind Figure 5 is that the frequency f0 dB lies
between the lowest pole at f1 = 1/(2πτ1) and the
second pole at f2 = 1/(2πτ2). As indicated in
Figure 5, this condition is satisfied for values
of α ≥ 1.

Using Figure 5 the frequency (denoted by f0 dB)
is found where the loop gain βA0 satisfies the
unity gain or 0 dB condition, as defined by:

The slope of the downward leg of the gain plot is
(20 dB/decade); for every factor of ten increase
in frequency, the gain drops by the same factor:

The phase margin is the departure of the phase at f0 dB from −180°. Thus, the margin is:

Because f0 dB / f1 = βA0 >> 1, the term in f1 is 90°. That makes the phase margin:

In particular, for case α = 1, φm = 45°, and for α = 2, φm = 63.4°. Sansen recommends α = 3, φm = 71.6° as a "good
safety position to start with".
If α is increased by shortening τ2, the settling time tS also is shortened. If α is increased by lengthening τ1, the
settling time tS is little altered. More commonly, both τ1 and τ2 change, for example if the technique of pole splitting
is used.
As an aside, for an amplifier with more than two poles, the diagram of Figure 5 still may be made to fit the Bode
plots by making f2 a fitting parameter, referred to as an "equivalent second pole" position.
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Formal mathematical description

Figure 4: Black box representation of a
dynamical system, its input and its step response.

This section provides a formal mathematical definition of step response
in terms of the abstract mathematical concept of a dynamical system 
: all notations and assumptions required for the following description
are listed here.

• is the evolution parameter of the system, called "time" for the
sake of simplicity,

• is the state of the system at time , called "output" for the sake of simplicity,
• is the dynamical system evolution function,
• is the dynamical system initial state,
• is the Heaviside step function

Nonlinear dynamical system
For a general dynamical system, the step response is defined as follows:

It is the evolution function when the control inputs (or source term, or forcing inputs) are Heaviside functions: the
notation emphasizes this concept showing H(t) as a subscript.

Linear dynamical system
For a linear time-invariant black box, let for notational convenience: the step response can be obtained by
convolution of the Heaviside step function control and the impulse response h(t) of the system itself

References and notes
[1] This estimate is a bit conservative (long) because the factor 1 /sin(φ) in the overshoot contribution to S ( t ) has been replaced by 1 /sin(φ) ≈

1.
[2] According to Johns and Martin, op. cit., settling time is significant in switched-capacitor circuits, for example, where an op amp settling time

must be less than half a clock period for sufficiently rapid charge transfer.
[3] The gain margin of the amplifier cannot be found using a two-pole model, because gain margin requires determination of the frequency f180

where the gain flips sign, and this never happens in a two-pole system. If we know f180 for the amplifier at hand, the gain margin can be found
approximately, but f180 then depends on the third and higher pole positions, as does the gain margin, unlike the estimate of phase margin,
which is a two-pole estimate.

Further reading
• Robert I. Demrow Settling time of operational amplifiers (http:/ / www. analog. com/ static/ imported-files/

application_notes/ 466359863287538299597392756AN359. pdf)
• Cezmi Kayabasi Settling time measurement techniques achieving high precision at high speeds (http:/ / www.

wpi. edu/ Pubs/ ETD/ Available/ etd-050505-140358/ unrestricted/ ckayabasi. pdf)
•• Vladimir Igorevic Arnol'd "Ordinary differential equations", various editions from MIT Press and from Springer

Verlag, chapter 1 "Fundamental concepts"
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External links
• Kuo power point slides; Chapter 7 especially (http:/ / bcs. wiley. com/ he-bcs/ Books?action=resource&

bcsId=2357& itemId=0471134767& resourceId=5596)

BIBO stability
In signal processing, specifically control theory, BIBO stability is a form of stability for linear signals and systems
that take inputs. BIBO stands for Bounded-Input Bounded-Output. If a system is BIBO stable, then the output will be
bounded for every input to the system that is bounded.
A signal is bounded if there is a finite value such that the signal magnitude never exceeds , that is

for discrete-time signals, or
for continuous-time signals.

Time-domain condition for linear time invariant systems

Continuous-time necessary and sufficient condition
For a continuous time linear time invariant (LTI) system, the condition for BIBO stability is that the impulse
response be absolutely integrable, i.e., its L1 norm exists.

Discrete-time sufficient condition
For a discrete time LTI system, the condition for BIBO stability is that the impulse response be absolutely
summable, i.e., its  norm exists.

Proof of sufficiency

Given a discrete time LTI system with impulse response the relationship between the input and the
output is

where denotes convolution. Then it follows by the definition of convolution

Let be the maximum value of , i.e., the -norm.

(by the triangle inequality)
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If is absolutely summable, then and

So if is absolutely summable and is bounded, then is bounded as well because
.

The proof for continuous-time follows the same arguments.

Frequency-domain condition for linear time invariant systems

Continuous-time signals
For a rational and continuous-time system, the condition for stability is that the region of convergence (ROC) of the
Laplace transform includes the imaginary axis. When the system is causal, the ROC is the open region to the right of
a vertical line whose abscissa is the real part of the "largest pole", or the pole that has the greatest real part of any
pole in the system. The real part of the largest pole defining the ROC is called the abscissa of convergence.
Therefore, all poles of the system must be in the strict left half of the s-plane for BIBO stability.
This stability condition can be derived from the above time-domain condition as follows :

where and .
The region of convergence must therefore include the imaginary axis.

Discrete-time signals
For a rational and discrete time system, the condition for stability is that the region of convergence (ROC) of the
z-transform includes the unit circle. When the system is causal, the ROC is the open region outside a circle whose
radius is the magnitude of the pole with largest magnitude. Therefore, all poles of the system must be inside the unit
circle in the z-plane for BIBO(bounded input-bounded output) stability.
This stability condition can be derived in a similar fashion to the continuous-time derivation:
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where and .
The region of convergence must therefore include the unit circle.

Further reading
• Gordon E. Carlson Signal and Linear Systems Analysis with Matlab second edition, Wiley, 1998, ISBN

0-471-12465-6
• John G. Proakis and Dimitris G. Manolakis Digital Signal Processing Principals, Algorithms and Applications

third edition, Prentice Hall, 1996, ISBN 0-13-373762-4
• D. Ronald Fannin, William H. Tranter, and Rodger E. Ziemer Signals & Systems Continuous and Discrete fourth

edition, Prentice Hall, 1998, ISBN 0-13-496456-X
• Proof of the necessary conditions for BIBO stability. [1]

• Christophe Basso Designing Control Loops for Linear and Switching Power Supplies: A Tutorial Guide first
edition, Artech House, 2012, 978-1608075577

References
[1] http:/ / cnx. org/ content/ m12319/ latest/

Nyquist stability criterion

The Nyquist plot for .

In control theory and stability theory, the
Nyquist stability criterion, discovered by
Swedish-American electrical engineer Harry
Nyquist at Bell Telephone Laboratories in
1932,[1] is a graphical technique for
determining the stability of a dynamical
system. Because it only looks at the Nyquist
plot of the open loop systems, it can be
applied without explicitly computing the
poles and zeros of either the closed-loop or
open-loop system (although the number of
each type of right-half-plane singularities
must be known). As a result, it can be
applied to systems defined by non-rational
functions, such as systems with delays. In
contrast to Bode plots, it can handle transfer
functions with right half-plane singularities.
In addition, there is a natural generalization
to more complex systems with multiple
inputs and multiple outputs, such as control
systems for airplanes.
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The Nyquist criterion is widely used in electronics and control system engineering, as well as other fields, for
designing and analyzing systems with feedback. While Nyquist is one of the most general stability tests, it is still
restricted to linear, time-invariant (LTI) systems. Non-linear systems must use more complex stability criteria, such
as Lyapunov or the circle criterion. While Nyquist is a graphical technique, it only provides a limited amount of
intuition for why a system is stable or unstable, or how to modify an unstable system to be stable. Techniques like
Bode plots, while less general, are sometimes a more useful design tool.

Background
We consider a system whose open loop transfer function (OLTF) is ; when placed in a closed loop with
negative feedback , the closed loop transfer function (CLTF) then becomes . Stability can be
determined by examining the roots of the polynomial , e.g. using the Routh array, but this method is
somewhat tedious. Conclusions can also be reached by examining the OLTF, using its Bode plots or, as here, polar
plot of the OLTF using the Nyquist criterion, as follows.
Any Laplace domain transfer function can be expressed as the ratio of two polynomials:

The roots of are called the zeros of , and the roots of are the poles of . The poles of
are also said to be the roots of the "characteristic equation" .

The stability of is determined by the values of its poles: for stability, the real part of every pole must be
negative. If is formed by closing a negative unity feedback loop around the open-loop transfer function

, then the roots of the characteristic equation are also the zeros of , or simply the
roots of .

Cauchy's argument principle
From complex analysis, specifically the argument principle, we know that a contour drawn in the complex 
plane, encompassing but not passing through any number of zeros and poles of a function , can be mapped to
another plane (the plane) by the function . The Nyquist plot of , which is the contour

will encircle the point of the plane times, where . Here are
and respectively the number of zeros of and poles of inside the contour . Note that

we count encirclements in the plane in the same sense as the contour and that encirclements in the
opposite direction are negative encirclements. That is, we consider clockwise encirclements to be positive and
counterclockwise encirclements to be negative.Instead of Cauchy's argument principle, the original paper by Harry Nyquist in 1932 uses a less elegant approach.
The approach explained here is similar to the approach used by Leroy MacColl (Fundamental theory of
servomechanisms 1945) or by Hendrik Bode (Network analysis and feedback amplifier design 1945), both of whom
also worked for Bell Laboratories. This approach appears in most modern textbooks on control theory.

https://en.wikipedia.org/w/index.php?title=Electronics
https://en.wikipedia.org/w/index.php?title=Control_system_engineering
https://en.wikipedia.org/w/index.php?title=Feedback
https://en.wikipedia.org/w/index.php?title=Linear_system
https://en.wikipedia.org/w/index.php?title=Time-invariant_system
https://en.wikipedia.org/w/index.php?title=Stability_criterion
https://en.wikipedia.org/w/index.php?title=Lyapunov_stability
https://en.wikipedia.org/w/index.php?title=Circle_criterion
https://en.wikipedia.org/w/index.php?title=Routh_array
https://en.wikipedia.org/w/index.php?title=Laplace_domain
https://en.wikipedia.org/w/index.php?title=Complex_analysis
https://en.wikipedia.org/w/index.php?title=Harry_Nyquist
https://en.wikipedia.org/w/index.php?title=Hendrik_Bode
https://en.wikipedia.org/w/index.php?title=Bell_Laboratories


Nyquist stability criterion 27

The Nyquist criterion
We first construct The Nyquist Contour, a contour that encompasses the right-half of the complex plane:

• a path traveling up the axis, from to .
• a semicircular arc, with radius , that starts at and travels clock-wise to .

The Nyquist Contour mapped through the function yields a plot of in the complex plane. By
the Argument Principle, the number of clock-wise encirclements of the origin must be the number of zeros of

in the right-half complex plane minus the poles of in the right-half complex plane. If instead,
the contour is mapped through the open-loop transfer function , the result is the Nyquist Plot of . By
counting the resulting contour's encirclements of -1, we find the difference between the number of poles and zeros in
the right-half complex plane of . Recalling that the zeros of are the poles of the closed-loop
system, and noting that the poles of are same as the poles of , we now state The Nyquist

Criterion:Given a Nyquist contour , let be the number of poles of encircled by , and be the number of
zeros of encircled by . Alternatively, and more importantly, is the number of poles of the closed
loop system in the right half plane. The resultant contour in the -plane, shall encircle (clock-wise) the
point  times such that .
If the system is originally open-loop unstable, feedback is necessary to stabilize the system. Right-half-plane (RHP)
poles represent that instability. For closed-loop stability of a system, the number of closed-loop roots in the right half
of the s-plane must be zero. Hence, the number of counter-clockwise encirclements about must be equal
to the number of open-loop poles in the RHP. Any clockwise encirclements of the critical point by the open-loop
frequency response (when judged from low frequency to high frequency) would indicate that the feedback control
system would be destabilizing if the loop were closed. (Using RHP zeros to "cancel out" RHP poles does not remove
the instability, but rather ensures that the system will remain unstable even in the presence of feedback, since the
closed-loop roots travel between open-loop poles and zeros in the presence of feedback. In fact, the RHP zero can
make the unstable pole unobservable and therefore not stabilizable through feedback.)

The Nyquist criterion for systems with poles on the imaginary axis
The above consideration was conducted with an assumption that the open-loop transfer function does not
have any pole on the imaginary axis (i.e. poles of the form ). This results from the requirement of the
argument principle that the contour cannot pass through any pole of the mapping function. The most common case
are systems with integrators (poles at zero).
To be able to analyze systems with poles on the imaginary axis, the Nyquist Contour can be modified to avoid
passing through the point . One way to do it is to construct a semicircular arc with radius around

, that starts at and travels anticlockwise to . Such a modification implies
that the phasor travels along an arc of infinite radius by , where is the multiplicity of the pole on the
imaginary axis.

https://en.wikipedia.org/w/index.php?title=Nyquist_Plot
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Mathematical Derivation
Our goal is to, through this process, check for the stability of the transfer function of our unity feedback system with
gain k, which is given by

That is, we would like to check whether the characteristic equation of the above transfer function, given by

has zeros outside the open left-half-plane (commonly initialized as the OLHP).
We suppose that we have a clockwise (i.e. negatively oriented) contour enclosing the right hand plane, with
indentations as needed to avoid passing through zeros or poles of the function . Cauchy's argument principle
states that

Where denotes the number of zeros of enclosed by the contour and denotes the number of poles of
by the same contour. Rearranging, we have , which is to say

We then note that has exactly the same poles as . Thus, we may find by counting
the poles of that appear within the contour, that is, within the open right half plane (ORHP).
We will now rearrange the above integral via substitution. That is, setting , we have

We then make a further substitution, setting . This gives us

We now note that gives us the image of our contour under , which is

to say our Nyquist Plot. We may further reduce the integral

by applying Cauchy's integral formula. In fact, we find that the above integral corresponds precisely to the number of
times the Nyquist Plot encircles the point clockwise. Thus, we may finally state that

We thus find that as defined above corresponds to a stable unity-feedback system when , as evaluated
above, is equal to 0.
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Summary
• If the open-loop transfer function has a zero pole of multiplicity , then the Nyquist plot has a

discontinuity at . During further analysis it should be assumed that the phasor travels times clock-wise
along a semicircle of infinite radius. After applying this rule, the zero poles should be neglected, i.e. if there are
no other unstable poles, then the open-loop transfer function should be considered stable.

• If the open-loop transfer function is stable, then the closed-loop system is unstable for any encirclement of
the point -1.

• If the open-loop transfer function is unstable, then there must be one counter clock-wise encirclement of -1
for each pole of in the right-half of the complex plane.

•• The number of surplus encirclements (greater than N+P) is exactly the number of unstable poles of the
closed-loop system

• However, if the graph happens to pass through the point , then deciding upon even the marginal
stability of the system becomes difficult and the only conclusion that can be drawn from the graph is that there
exist zeros on the axis.
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Routh–Hurwitz stability criterion
In control system theory, the Routh–Hurwitz stability criterion is a mathematical test that is a necessary and
sufficient condition for the stability of a linear time invariant (LTI) control system. The Routh test is an efficient
recursive algorithm that English mathematician Edward John Routh proposed in 1876 to determine whether all the
roots of the characteristic polynomial of a linear system have negative real parts. German mathematician Adolf
Hurwitz independently proposed in 1895 to arrange the coefficients of the polynomial into a square matrix, called
the Hurwitz matrix, and showed that the polynomial is stable if and only if the sequence of determinants of its
principal submatrices are all positive. The two procedures are equivalent, with the Routh test providing a more
efficient way to compute the Hurwitz determinants than computing them directly. A polynomial satisfying the
Routh-Hurwitz criterion is called a Hurwitz polynomial.
The importance of the criterion is that the roots p of the characteristic equation of a linear system with negative real
parts represent solutions ept of the system that are stable (bounded). Thus the criterion provides a way to determine if
the equations of motion of a linear system have only stable solutions, without solving the system directly. For
discrete systems, the corresponding stability test can be handled by the Schur-Cohn criterion, the Jury test and the
Bistritz test. With the advent of computers, the criterion has become less widely used, as an alternative is to solve the
polynomial numerically, obtaining approximations to the roots directly.
The Routh test can be derived through the use of the Euclidean algorithm and Sturm's theorem in evaluating Cauchy
indices. Hurwitz derived his conditions differently.

Using Euclid's algorithm
The criterion is related to Routh–Hurwitz theorem. Indeed, from the statement of that theorem, we have

where:
• p is the number of roots of the polynomial ƒ(z) with negative Real Part;
• q is the number of roots of the polynomial ƒ(z) with positive Real Part (let us remind ourselves that ƒ is supposed

to have no roots lying on the imaginary line);
• w(x) is the number of variations of the generalized Sturm chain obtained from and (by successive

Euclidean divisions) where for a real y.
By the fundamental theorem of algebra, each polynomial of degree n must have n roots in the complex plane (i.e.,
for an ƒ with no roots on the imaginary line, p + q = n). Thus, we have the condition that ƒ is a (Hurwitz) stable
polynomial if and only if p − q = n (the proof is given below). Using the Routh–Hurwitz theorem, we can replace the
condition on p and q by a condition on the generalized Sturm chain, which will give in turn a condition on the
coefficients of ƒ.

Using matrices
Let f(z) be a complex polynomial. The process is as follows:

1. Compute the polynomials and such that where y is a real number.
2. Compute the Sylvester matrix associated to and .
3.3. Rearrange each row in such a way that an odd row and the following one have the same number of leading zeros.
4. Compute each principal minor of that matrix.
5. If at least one of the minors is negative (or zero), then the polynomial f is not stable.
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Example

• Let (for the sake of simplicity we take real coefficients) where (to avoid a root
in zero so that we can use the Routh–Hurwitz theorem). First, we have to calculate the real polynomials 
and :

Next, we divide those polynomials to obtain the generalized Sturm chain:

• yields 
• yields and the Euclidean division stops.

Notice that we had to suppose b different from zero in the first division. The generalized Sturm chain is in this case
. Putting , the sign of is the opposite sign of

a and the sign of by is the sign of b. When we put , the sign of the first element of the chain is again the
opposite sign of a and the sign of by is the opposite sign of b. Finally, -c has always the opposite sign of c.
Suppose now that f is Hurwitz-stable. This means that (the degree of f). By the
properties of the function w, this is the same as and . Thus, a, b and c must have the
same sign. We have thus found the necessary condition of stability for polynomials of degree 2.

Routh–Hurwitz criterion for second, third, and fourth-order polynomials
In the following, we assume the coefficient of the highest order (e.g. in a second order polynomial) to be positive.
If necessary, this can always be achieved by multiplication of the polynomial with .

• For a second-order polynomial, , all the roots are in the left half plane (and the
system with characteristic equation is stable) if all the coefficients satisfy .

• For a third-order polynomial , all the coefficients must satisfy
, and 

• For a fourth-order polynomial , all the coefficients must
satisfy , and and 

Higher-order example
A tabular method can be used to determine the stability when the roots of a higher order characteristic polynomial
are difficult to obtain. For an nth-degree polynomial

•
the table has n + 1 rows and the following structure:

where the elements and can be computed as follows:

•

•

When completed, the number of sign changes in the first column will be the number of non-negative poles.
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Consider a system with a characteristic polynomial

•
We have the following table:

1 2 3 0

4 5 6 0

0.75 1.5 0 0

−3 6 0

3 0

6 0

In the first column, there are two sign changes (0.75 → −3, and −3 → 3), thus there are two non-negative roots
where the system is unstable.
Sometimes the presence of poles on the imaginary axis creates a situation of marginal stability. In that case the
coefficients of the "Routh Array" in a whole row become zero and thus further solution of the polynomial for finding
changes in sign is not possible. Then another approach comes into play. The row of polynomial which is just above
the row containing the zeroes is called "Auxiliary Polynomial".

•
We have the following table:

1 8 20 16

2 12 16 0

2 12 16 0

0 0 0 0

In such a case the Auxiliary polynomial is which is again equal to zero. The next step
is to differentiate the above equation which yields the following polynomial. . The
coefficients of the row containing zero now become "8" and "24". The process of Routh array is proceeded using
these values which yield two points on the imaginary axis. These two points on the imaginary axis are the prime
cause of marginal stability.
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Root locus
In control theory and stability theory, root locus analysis is a graphical method for examining how the roots of a
system change with variation of a certain system parameter, commonly a gain within a feedback system. This is a
technique used as a stability criterion in the field of control systems developed by Walter R. Evans which can
determine stability of the system. The root locus plots the poles of the closed loop transfer function as a function of a
gain parameter.

Uses
In addition to determining the stability of the system, the root locus can be used to design the damping ratio and
natural frequency of a feedback system. Lines of constant damping ratio can be drawn radially from the origin and
lines of constant natural frequency can be drawn as arcs whose center points coincide with the origin. By selecting a
point along the root locus that coincides with a desired damping ratio and natural frequency a gain, K, can be
calculated and implemented in the controller. More elaborate techniques of controller design using the root locus are
available in most control textbooks: for instance, lag, lead, PI, PD and PID controllers can be designed
approximately with this technique.
The definition of the damping ratio and natural frequency presumes that the overall feedback system is well
approximated by a second order system; i.e. the system has a dominant pair of poles. This is often not the case, so it
is good practice to simulate the final design to check if the project goals are satisfied.
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RL = root locus; ZARL = zero angle root locus

Example

Suppose there is a feedback system
whose input is the signal X(s) and
output is Y(s). The feedback system
forward path gain is G(s); the feedback
path gain is H(s).

For this system, the overall transfer function is given by[1]

Thus the closed-loop poles (roots of the characteristic equation) of the transfer function are the solutions to the
equation 1 + G(s)H(s) = 0. The principal feature of this equation is that roots may be found wherever G(s)H(s) = -1.
In systems without pure delay, the product G(s)H(s) = -1 is a rational polynomial function and may be expressed
as[2]

where the −zi are the m zeros, the −pi are the m+n poles, and K is a scalar gain. Typically, a root locus diagram will
indicate the transfer function's pole locations for varying values of K. A root locus plot will be all those points in the
s-plane where G(s)H(s) = -1 for any value of K.
The factoring of K and the use of simple monomials means the evaluation of the rational polynomial can be done 
with vector techniques that add or subtract angles and multiply or divide magnitudes. The vector formulation arises 
from the fact that each monomial term in the factored G(s)H(s), (s−a) for example, represents the vector from a to s. 
The polynomial can be evaluated by considering the magnitudes and angles of each of these vectors. According to
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vector mathematics, the angle of the result is the sum of all the angles in the numerator add minus the sum of all the
angles in the denominator. Similarly, the magnitude of the result is the product of all the magnitudes in the
numerator divided by the product of all the magnitudes in the denominator. It turns out that the calculation of the
magnitude is not needed because K varies; one of its values may result in a root. So to test whether a point in the
s-plane is on the root locus, only the angles to all the open loop poles and zeros need be considered. A graphical
method that uses a special protractor called a "Spirule" was once used to determine angles and draw the root loci.
From the function T(s), it can be seen that the value of K does not affect the location of the zeros.Wikipedia:Citation
needed The root locus only gives the location of closed loop poles as the gain K is varied. The zeros of a system do
not move.
Using a few basic rules, the root locus method can plot the overall shape of the path (locus) traversed by the roots as
the value of K varies. The plot of the root locus then gives an idea of the stability and dynamics of this feedback
system for different values of K.

Sketching root locus
•• Mark open-loop poles and zeros
•• Mark real axis portion to the left of an odd number of poles and zeros
• Find asymptotes
Let P be the number of poles and Z be the number of zeros:

number of asymptotes

The asymptotes intersect the real axis at (which is called the centroid) and depart at angle given by:

where is the sum of all the locations of the poles, and is the sum of all the locations of the explicit zeros.

•• Phase condition on test point to find angle of departure
•• Compute breakaway/break-in points
The breakaway points are located at the roots of the following equation:

Once you solve for z, the real roots give you the breakaway/reentry points. Complex roots correspond to a lack of
breakaway/reentry.
The break-away (break-in) points are obtained by solving a polynomial equation

z-plane versus s-plane
The root locus can also be computed in the z-plane, the discrete counterpart of the s-plane. An equation (z = esT) 
maps continuous s-plane poles (not zeros) into the z-domain, where T is the sampling period. The stable, left half 
s-plane maps into the interior of the unit circle of the z-plane, with the s-plane origin equating to |z| = 1 
(because e0 = 1). A diagonal line of constant damping in the s-plane maps around a spiral from (1,0) in the z plane as 
it curves in toward the origin. Note also that the Nyquist aliasing criteria is expressed graphically in the z-plane by 
the x-axis, where (wnT = π). The line of constant damping just described spirals in indefinitely but in sampled data 
systems, frequency content is aliased down to lower frequencies by integral multiples of the Nyquist frequency. That 
is, the sampled response appears as a lower frequency and better damped as well since the root in the z-plane maps
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equally well to the first loop of a different, better damped spiral curve of constant damping. Many other interesting
and relevant mapping properties can be described, not least that z-plane controllers, having the property that they
may be directly implemented from the z-plane transfer function (zero/pole ratio of polynomials), can be imagined
graphically on a z-plane plot of the open loop transfer function, and immediately analyzed utilizing root locus.
Since root locus is a graphical angle technique, root locus rules work the same in the z and s planes.
The idea of a root locus can be applied to many systems where a single parameter K is varied. For example, it is
useful to sweep any system parameter for which the exact value is uncertain, in order to determine its behavior.
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Bode plot

Figure 1(a): The Bode plot for a first-order (one-pole) highpass filter; the straight-line
approximations are labeled "Bode pole"; phase varies from 90° at low frequencies (due to

the contribution of the numerator, which is 90° at all frequencies) to 0° at high
frequencies (where the phase contribution of the denominator is −90° and cancels the

contribution of the numerator).

A Bode plot /ˈboʊdi/ is a graph of the
transfer function of a linear,
time-invariant system versus
frequency, plotted with a
log-frequency axis, to show the
system's frequency response. It is
usually a combination of a Bode
magnitude plot, expressing the
magnitude of the frequency response
gain, and a Bode phase plot,
expressing the frequency response
phase shift.

Overview

Among his several important
contributions to circuit theory and
control theory, engineer Hendrik Wade
Bode (1905–1982), while working at
Bell Labs in the United States in the
1930s, devised a simple but accurate
method for graphing gain and
phase-shift plots. These bear his name,
Bode gain plot and Bode phase plot. "Bode" is pronounced /ˈboʊdi/ BOH-dee (Dutch: [ˈbodə]).[1]

The magnitude axis of the Bode plot is usually expressed as decibels of power, that is by the 20 log rule: 20 times the
common (base 10) logarithm of the amplitude gain. With the magnitude gain being logarithmic, Bode plots make
multiplication of magnitudes a simple matter of adding distances on the graph (in decibels), since
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Figure 1(b): The Bode plot for a first-order (one-pole) lowpass filter; the straight-line
approximations are labeled "Bode pole"; phase is 90° lower than for Figure 1(a) because

the phase contribution of the numerator is 0° at all frequencies.

A Bode phase plot is a graph of phase
versus frequency, also plotted on a
log-frequency axis, usually used in
conjunction with the magnitude plot, to
evaluate how much a signal will be
phase-shifted. For example a signal
described by: Asin(ωt) may be
attenuated but also phase-shifted. If the
system attenuates it by a factor x and
phase shifts it by −Φ the signal out of
the system will be (A/x) sin(ωt − Φ).
The phase shift Φ is generally a
function of frequency.

Phase can also be added directly from
the graphical values, a fact that is
mathematically clear when phase is
seen as the imaginary part of the
complex logarithm of a complex gain.
In Figure 1(a), the Bode plots are
shown for the one-pole highpass filter function:

where f is the frequency in Hz, and f1 is the pole position in Hz, f1 = 100 Hz in the figure. Using the rules for
complex numbers, the magnitude of this function is

while the phase is:

Care must be taken that the inverse tangent is set up to return degrees, not radians. On the Bode magnitude plot,
decibels are used, and the plotted magnitude is:

In Figure 1(b), the Bode plots are shown for the one-pole lowpass filter function:

Also shown in Figure 1(a) and 1(b) are the straight-line approximations to the Bode plots that are used in hand
analysis, and described later.
The magnitude and phase Bode plots can seldom be changed independently of each other — changing the amplitude
response of the system will most likely change the phase characteristics and vice versa. For minimum-phase systems
the phase and amplitude characteristics can be obtained from each other with the use of the Hilbert transform.
If the transfer function is a rational function with real poles and zeros, then the Bode plot can be approximated with 
straight lines. These asymptotic approximations are called straight line Bode plots or uncorrected Bode plots and
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are useful because they can be drawn by hand following a few simple rules. Simple plots can even be predicted
without drawing them.
The approximation can be taken further by correcting the value at each cutoff frequency. The plot is then called a
corrected Bode plot.

Rules for handmade Bode plot
The premise of a Bode plot is that one can consider the log of a function in the form:

as a sum of the logs of its poles and zeros:

This idea is used explicitly in the method for drawing phase diagrams. The method for drawing amplitude plots
implicitly uses this idea, but since the log of the amplitude of each pole or zero always starts at zero and only has one
asymptote change (the straight lines), the method can be simplified.

Straight-line amplitude plot

Amplitude decibels is usually done using to define decibels. Given a transfer function in the
form

where and are constants, , , and H is the transfer function:
• at every value of s where (a zero), increase the slope of the line by per decade.
• at every value of s where (a pole), decrease the slope of the line by per decade.
• The initial value of the graph depends on the boundaries. The initial point is found by putting the initial angular

frequency ω into the function and finding |H(jω)|.
•• The initial slope of the function at the initial value depends on the number and order of zeros and poles that are at

values below the initial value, and are found using the first two rules.

To handle irreducible 2nd order polynomials, can, in many cases, be approximated as
.

Note that zeros and poles happen when ω is equal to a certain or . This is because the function in question is
the magnitude of H(jω), and since it is a complex function, . Thus at any place where there
is a zero or pole involving the term , the magnitude of that term is

.
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Corrected amplitude plot
To correct a straight-line amplitude plot:
• at every zero, put a point  above the line,
• at every pole, put a point  below the line,
•• draw a smooth curve through those points using the straight lines as asymptotes (lines which the curve

approaches).
Note that this correction method does not incorporate how to handle complex values of or . In the case of an
irreducible polynomial, the best way to correct the plot is to actually calculate the magnitude of the transfer function
at the pole or zero corresponding to the irreducible polynomial, and put that dot over or under the line at that pole or
zero.

Straight-line phase plot
Given a transfer function in the same form as above:

the idea is to draw separate plots for each pole and zero, then add them up. The actual phase curve is given by
.

To draw the phase plot, for each pole and zero:
•• if A is positive, start line (with zero slope) at 0 degrees
•• if A is negative, start line (with zero slope) at 180 degrees
•• if the sum of the number of unstable zeros and poles is odd, add 180 degrees to that basis.
• at every (for stable zeros – ), increase the slope by degrees per decade,

beginning one decade before (E.g.: )

• at every (for stable poles – ), decrease the slope by degrees per decade,

beginning one decade before (E.g.: )

• "unstable" (right half plane) poles and zeros ( ) have opposite behavior
• flatten the slope again when the phase has changed by degrees (for a zero) or degrees (for a

pole),
•• After plotting one line for each pole or zero, add the lines together to obtain the final phase plot; that is, the final

phase plot is the superposition of each earlier phase plot.

Example
A passive (unity pass band gain) lowpass RC filter, for instance has the following transfer function expressed in the
frequency domain:

From the transfer function it can be determined that the cutoff frequency point fc (in hertz) is at the frequency

or (equivalently) at

where is the angular cutoff frequency in radians per second.

The transfer function in terms of the angular frequencies becomes:

https://en.wikipedia.org/w/index.php?title=Lowpass
https://en.wikipedia.org/w/index.php?title=RC_circuit
https://en.wikipedia.org/w/index.php?title=Frequency_domain
https://en.wikipedia.org/w/index.php?title=Cutoff_frequency
https://en.wikipedia.org/w/index.php?title=Hertz
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The above equation is the normalized form of the transfer function. The Bode plot is shown in Figure 1(b) above,
and construction of the straight-line approximation is discussed next.

Magnitude plot
The magnitude (in decibels) of the transfer function above, (normalized and converted to angular frequency form),
given by the decibel gain expression :

when plotted versus input frequency on a logarithmic scale, can be approximated by two lines and it forms the
asymptotic (approximate) magnitude Bode plot of the transfer function:

• for angular frequencies below it is a horizontal line at 0 dB since at low frequencies the term is small and

can be neglected, making the decibel gain equation above equal to zero,
• for angular frequencies above it is a line with a slope of −20 dB per decade since at high frequencies the 

term dominates and the decibel gain expression above simplifies to which is a straight line with a

slope of −20 dB per decade.
These two lines meet at the corner frequency. From the plot, it can be seen that for frequencies well below the corner
frequency, the circuit has an attenuation of 0 dB, corresponding to a unity pass band gain, i.e. the amplitude of the
filter output equals the amplitude of the input. Frequencies above the corner frequency are attenuated – the higher
the frequency, the higher the attenuation.

Phase plot
The phase Bode plot is obtained by plotting the phase angle of the transfer function given by

versus , where and are the input and cutoff angular frequencies respectively. For input frequencies much
lower than corner, the ratio is small and therefore the phase angle is close to zero. As the ratio increases the

absolute value of the phase increases and becomes –45 degrees when . As the ratio increases for input
frequencies much greater than the corner frequency, the phase angle asymptotically approaches −90 degrees. The
frequency scale for the phase plot is logarithmic.

https://en.wikipedia.org/w/index.php?title=Decibel
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Normalized plot
The horizontal frequency axis, in both the magnitude and phase plots, can be replaced by the normalized
(nondimensional) frequency ratio . In such a case the plot is said to be normalized and units of the frequencies

are no longer used since all input frequencies are now expressed as multiples of the cutoff frequency .

An example with pole and zero
Figures 2-5 further illustrate construction of Bode plots. This example with both a pole and a zero shows how to use
superposition. To begin, the components are presented separately.
Figure 2 shows the Bode magnitude plot for a zero and a low-pass pole, and compares the two with the Bode straight
line plots. The straight-line plots are horizontal up to the pole (zero) location and then drop (rise) at 20 dB/decade.
The second Figure 3 does the same for the phase. The phase plots are horizontal up to a frequency factor of ten
below the pole (zero) location and then drop (rise) at 45°/decade until the frequency is ten times higher than the pole
(zero) location. The plots then are again horizontal at higher frequencies at a final, total phase change of 90°.
Figure 4 and Figure 5 show how superposition (simple addition) of a pole and zero plot is done. The Bode straight
line plots again are compared with the exact plots. The zero has been moved to higher frequency than the pole to
make a more interesting example. Notice in Figure 4 that the 20 dB/decade drop of the pole is arrested by the 20
dB/decade rise of the zero resulting in a horizontal magnitude plot for frequencies above the zero location. Notice in
Figure 5 in the phase plot that the straight-line approximation is pretty approximate in the region where both pole
and zero affect the phase. Notice also in Figure 5 that the range of frequencies where the phase changes in the
straight line plot is limited to frequencies a factor of ten above and below the pole (zero) location. Where the phase
of the pole and the zero both are present, the straight-line phase plot is horizontal because the 45°/decade drop of the
pole is arrested by the overlapping 45°/decade rise of the zero in the limited range of frequencies where both are
active contributors to the phase.

Example with pole and zero

Figure 2: Bode magnitude plot for zero and low-pass pole; curves
labeled "Bode" are the straight-line Bode plots

Figure 3: Bode phase plot for zero and low-pass pole; curves labeled
"Bode" are the straight-line Bode plots

https://en.wikipedia.org/w/index.php?title=File%3ABode_Low_Pass_Magnitude_Plot.PNG
https://en.wikipedia.org/w/index.php?title=File%3ABode_Low_Pass_Phase_Plot.PNG
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Figure 4: Bode magnitude plot for pole-zero combination; the location
of the zero is ten times higher than in Figures 2&3; curves labeled

"Bode" are the straight-line Bode plots

Figure 5: Bode phase plot for pole-zero combination; the location of
the zero is ten times higher than in Figures 2&3; curves labeled "Bode"

are the straight-line Bode plots

Gain margin and phase margin
See also: Phase margin
Bode plots are used to assess the stability of negative feedback amplifiers by finding the gain and phase margins of
an amplifier. The notion of gain and phase margin is based upon the gain expression for a negative feedback
amplifier given by

where AFB is the gain of the amplifier with feedback (the closed-loop gain), β is the feedback factor and AOL is the
gain without feedback (the open-loop gain). The gain AOL is a complex function of frequency, with both magnitude
and phase.[2] Examination of this relation shows the possibility of infinite gain (interpreted as instability) if the
product βAOL = −1. (That is, the magnitude of βAOL is unity and its phase is −180°, the so-called Barkhausen
stability criterion). Bode plots are used to determine just how close an amplifier comes to satisfying this condition.
Key to this determination are two frequencies. The first, labeled here as f180, is the frequency where the open-loop
gain flips sign. The second, labeled here f0dB, is the frequency where the magnitude of the product | β AOL | = 1 (in
dB, magnitude 1 is 0 dB). That is, frequency f180 is determined by the condition:

where vertical bars denote the magnitude of a complex number (for example, | a + j b | = [ a2 + b2]1/2 ), and
frequency f0dB is determined by the condition:

One measure of proximity to instability is the gain margin. The Bode phase plot locates the frequency where the
phase of βAOL reaches −180°, denoted here as frequency f180. Using this frequency, the Bode magnitude plot finds
the magnitude of βAOL. If |βAOL|180 = 1, the amplifier is unstable, as mentioned. If |βAOL|180 < 1, instability does not
occur, and the separation in dB of the magnitude of |βAOL|180 from |βAOL| = 1 is called the gain margin. Because a
magnitude of one is 0 dB, the gain margin is simply one of the equivalent forms: 20 log10( |βAOL|180) = 20 log10(
|AOL|180) − 20 log10( 1 / β ).
Another equivalent measure of proximity to instability is the phase margin. The Bode magnitude plot locates the
frequency where the magnitude of |βAOL| reaches unity, denoted here as frequency f0dB. Using this frequency, the
Bode phase plot finds the phase of βAOL. If the phase of βAOL( f0dB) > −180°, the instability condition cannot be met
at any frequency (because its magnitude is going to be < 1 when f = f180), and the distance of the phase at f0dB in
degrees above −180° is called the phase margin.
If a simple yes or no on the stability issue is all that is needed, the amplifier is stable if f0dB < f180. This criterion is 
sufficient to predict stability only for amplifiers satisfying some restrictions on their pole and zero positions

https://en.wikipedia.org/w/index.php?title=File%3ABode_Pole-Zero_Magnitude_Plot.PNG
https://en.wikipedia.org/w/index.php?title=File%3ABode_Pole-Zero_Phase_Plot.PNG
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https://en.wikipedia.org/w/index.php?title=Barkhausen_stability_criterion
https://en.wikipedia.org/w/index.php?title=Barkhausen_stability_criterion
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(minimum phase systems). Although these restrictions usually are met, if they are not another method must be used,
such as the Nyquist plot. Optimal gain and phase margins may be computed using Nevanlinna–Pick interpolation
theory.

Examples using Bode plots
Figures 6 and 7 illustrate the gain behavior and terminology. For a three-pole amplifier, Figure 6 compares the Bode
plot for the gain without feedback (the open-loop gain) AOL with the gain with feedback AFB (the closed-loop gain).
See negative feedback amplifier for more detail.
In this example, AOL = 100 dB at low frequencies, and 1 / β = 58 dB. At low frequencies, AFB ≈ 58 dB as well.
Because the open-loop gain AOL is plotted and not the product β AOL, the condition AOL = 1 / β decides f0dB. The
feedback gain at low frequencies and for large AOL is AFB ≈ 1 / β (look at the formula for the feedback gain at the
beginning of this section for the case of large gain AOL), so an equivalent way to find f0dB is to look where the
feedback gain intersects the open-loop gain. (Frequency f0dB is needed later to find the phase margin.)
Near this crossover of the two gains at f0dB, the Barkhausen criteria are almost satisfied in this example, and the
feedback amplifier exhibits a massive peak in gain (it would be infinity if β AOL = −1). Beyond the unity gain
frequency f0dB, the open-loop gain is sufficiently small that AFB ≈ AOL (examine the formula at the beginning of this
section for the case of small AOL).
Figure 7 shows the corresponding phase comparison: the phase of the feedback amplifier is nearly zero out to the
frequency f180 where the open-loop gain has a phase of −180°. In this vicinity, the phase of the feedback amplifier
plunges abruptly downward to become almost the same as the phase of the open-loop amplifier. (Recall, AFB ≈ AOL
for small AOL.)
Comparing the labeled points in Figure 6 and Figure 7, it is seen that the unity gain frequency f0dB and the phase-flip
frequency f180 are very nearly equal in this amplifier, f180 ≈ f0dB ≈ 3.332 kHz, which means the gain margin and
phase margin are nearly zero. The amplifier is borderline stable.
Figures 8 and 9 illustrate the gain margin and phase margin for a different amount of feedback β. The feedback
factor is chosen smaller than in Figure 6 or 7, moving the condition | β AOL | = 1 to lower frequency. In this example,
1 / β = 77 dB, and at low frequencies AFB ≈ 77 dB as well.
Figure 8 shows the gain plot. From Figure 8, the intersection of 1 / β and AOL occurs at f0dB = 1 kHz. Notice that the
peak in the gain AFB near f0dB is almost gone.[3]

Figure 9 is the phase plot. Using the value of f0dB = 1 kHz found above from the magnitude plot of Figure 8, the
open-loop phase at f0dB is −135°, which is a phase margin of 45° above −180°.
Using Figure 9, for a phase of −180° the value of f180 = 3.332 kHz (the same result as found earlier, of course[4]).
The open-loop gain from Figure 8 at f180 is 58 dB, and 1 / β = 77 dB, so the gain margin is 19 dB.
Stability is not the sole criterion for amplifier response, and in many applications a more stringent demand than
stability is good step response. As a rule of thumb, good step response requires a phase margin of at least 45°, and
often a margin of over 70° is advocated, particularly where component variation due to manufacturing tolerances is
an issue. See also the discussion of phase margin in the step response article.

https://en.wikipedia.org/w/index.php?title=Minimum_phase
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https://en.wikipedia.org/w/index.php?title=Negative_feedback_amplifier
https://en.wikipedia.org/w/index.php?title=Step_response%23Step_response_of_feedback_amplifiers
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https://en.wikipedia.org/w/index.php?title=Step_response%23Phase_margin


Bode plot 45

Examples

Figure 6: Gain of feedback amplifier AFB in dB and corresponding
open-loop amplifier AOL. Parameter 1/β = 58 dB, and at low

frequencies AFB ≈ 58 dB as well. The gain margin in this amplifier is
nearly zero because | βAOL| = 1 occurs at almost f = f180°.

Figure 7: Phase of feedback amplifier °AFB in degrees and
corresponding open-loop amplifier °AOL. The phase margin in this
amplifier is nearly zero because the phase-flip occurs at almost the

unity gain frequency f = f0dB where | βAOL| = 1.

Figure 8: Gain of feedback amplifier AFB in dB and corresponding
open-loop amplifier AOL. In this example, 1 / β = 77 dB. The gain

margin in this amplifier is 19 dB.

Figure 9: Phase of feedback amplifier AFB in degrees and
corresponding open-loop amplifier AOL. The phase margin in this

amplifier is 45°.

Bode plotter

Figure 10: Amplitude diagram of a 10th order Chebyshev filter plotted using a Bode
Plotter application. The chebyshev transfer function is defined by poles and zeros which

are added by clicking on a graphical complex diagram.

The Bode plotter is an electronic
instrument resembling an oscilloscope,
which produces a Bode diagram, or a
graph, of a circuit's voltage gain or
phase shift plotted against frequency in
a feedback control system or a filter.
An example of this is shown in Figure
10. It is extremely useful for analyzing
and testing filters and the stability of
feedback control systems, through the
measurement of corner (cutoff)
frequencies and gain and phase
margins.

This is identical to the function
performed by a vector network analyzer, but the network analyzer is typically used at much higher frequencies.

For education/research purposes, plotting Bode diagrams for given transfer functions facilitates better understanding
and getting faster results (see external links).
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Related plots
Main article: Nyquist plot
Main article: Nichols plot
Two related plots that display the same data in different coordinate systems are the Nyquist plot and the Nichols plot.
These are parametric plots, with frequency as the input and magnitude and phase of the frequency response as the
output. The Nyquist plot displays these in polar coordinates, with magnitude mapping to radius and phase to
argument (angle). The Nichols plot displays these in rectangular coordinates, on the log scale.

Related Plots

A Nyquist plot. A Nichols plot of the same response.

Notes
[1] Van Valkenburg, M. E. University of Illinois at Urbana-Champaign, "In memoriam: Hendrik W. Bode (1905-1982)", IEEE Transactions on

Automatic Control, Vol. AC-29, No 3., March 1984, pp. 193-194. Quote: "Something should be said about his name. To his colleagues at Bell
Laboratories and the generations of engineers that have followed, the pronunciation is boh-dee. The Bode family preferred that the original
Dutch be used as boh-dah."

[2] Ordinarily, as frequency increases the magnitude of the gain drops and the phase becomes more negative, although these are only trends and
may be reversed in particular frequency ranges. Unusual gain behavior can render the concepts of gain and phase margin inapplicable. Then
other methods such as the Nyquist plot have to be used to assess stability.

[3] The critical amount of feedback where the peak in the gain just disappears altogether is the maximally flat or Butterworth design.
[4] The frequency where the open-loop gain flips sign f180 does not change with a change in feedback factor; it is a property of the open-loop

gain. The value of the gain at f180 also does not change with a change in β. Therefore, we could use the previous values from Figures 6 and 7.
However, for clarity the procedure is described using only Figures 8 and 9.
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https://en.wikipedia.org/w/index.php?title=File%3ANyquist.svg
https://en.wikipedia.org/w/index.php?title=File%3ANichols.svg
https://en.wikipedia.org/w/index.php?title=IEEE
https://en.wikipedia.org/w/index.php?title=Nyquist_plot
https://en.wikipedia.org/w/index.php?title=Butterworth_filter%23Maximal_flatness
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References

External links

Wikimedia Commons has media related to Bode plots.

• Explanation of Bode plots with movies and examples (http:/ / www. facstaff. bucknell. edu/ mastascu/
eControlHTML/ Freq/ Freq5. html)

• How to draw piecewise asymptotic Bode plots (http:/ / lpsa. swarthmore. edu/ Bode/ BodeHow. html)
• Summarized drawing rules (http:/ / lims. mech. northwestern. edu/ ~lynch/ courses/ ME391/ 2003/ bodesketching.

pdf) (PDF)
• Bode plot applet (http:/ / www. uwm. edu/ People/ msw/ BodePlot/ ) - Accepts transfer function coefficients as

input, and calculates magnitude and phase response
• Circuit analysis in electrochemistry (http:/ / www. abc. chemistry. bsu. by/ vi/ fit. htm)
• Tim Green: Operational amplifier stability (http:/ / www. en-genius. net/ includes/ files/ acqt_013105. pdf)

Includes some Bode plot introduction
• Gnuplot code for generating Bode plot: DIN-A4 printing template (pdf)
• MATLAB function for creating a Bode plot of a system (http:/ / www. mathworks. com/ help/ control/ ref/ bode.

html)
• MATLAB Tech Talk videos explaining Bode plots and showing how to use them for control design (http:/ /

www. mathworks. com/ videos/ tech-talks/ controls/ )
• Insert the poles and zeros and this website will draw the asymptotic and accurate Bode plots (http:/ / www.

onmyphd. com/ ?p=bode. plot)
• Mathematica function for creating the Bode plot (http:/ / reference. wolfram. com/ mathematica/ ref/ BodePlot.

html)
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http://www.facstaff.bucknell.edu/mastascu/eControlHTML/Freq/Freq5.html
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http://www.onmyphd.com/?p=bode.plot
http://reference.wolfram.com/mathematica/ref/BodePlot.html
http://reference.wolfram.com/mathematica/ref/BodePlot.html
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Nyquist plot

A Nyquist plot.

A Nyquist plot is a parametric plot of a frequency response used in
automatic control and signal processing. The most common use of
Nyquist plots is for assessing the stability of a system with feedback. In
Cartesian coordinates, the real part of the transfer function is plotted on
the X axis. The imaginary part is plotted on the Y axis. The frequency
is swept as a parameter, resulting in a plot per frequency. Alternatively,
in polar coordinates, the gain of the transfer function is plotted as the
radial coordinate, while the phase of the transfer function is plotted as
the angular coordinate. The Nyquist plot is named after Harry Nyquist,
a former engineer at Bell Laboratories.

Uses
Assessment of the stability of a closed-loop negative feedback system is done by applying the Nyquist stability
criterion to the Nyquist plot of the open-loop system (i.e. the same system without its feedback loop). This method is
easily applicable even for systems with delays and other non-rational transfer functions, which may appear difficult
to analyze by means of other methods. Stability is determined by looking at the number of encirclements of the point
at (-1,0). Range of gains over which the system will be stable can be determined by looking at crossing of the real
axis.
The Nyquist plot can provide some information about the shape of the transfer function. For instance, the plot
provides information on the difference between the number of poles and zeros of the transfer function[1] by the angle
at which the curve approaches the origin.
When drawn by hand, a cartoon version of the Nyquist plot is sometimes used, which shows the shape of the curve,
but where coordinates are distorted to show more detail in regions of interest. When plotted computationally, one
needs to be careful to cover all frequencies of interest. This typically means that the parameter is swept
logarithmically, in order to cover a wide range of values.

References
[1] Nyquist Plots (http:/ / www. facstaff. bucknell. edu/ mastascu/ econtrolhtml/ Freq/ Freq6. html)

External links

Wikimedia Commons has media related to Nyquist plots.

• Applets with modifiable parameters (http:/ / controlcan. homestead. com/ files/ idxpages. htm)
• EIS Spectrum Analyser - a freeware program for analysis and simulation of impedance spectra (http:/ / www. abc.

chemistry. bsu. by/ vi/ analyser/ )
• MATLAB function (http:/ / www. mathworks. com/ help/ control/ ref/ nyquist. html) for creating a Nyquist plot

of a frequency response of a dynamic system model.
• PID Nyquist plot shaping (http:/ / www. pidlab. com/ en/ pid-control-lab-3-1) - free interactive virtual tool,

control loop simulator
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https://commons.wikimedia.org/wiki/Category:Nyquist_plots
http://controlcan.homestead.com/files/idxpages.htm
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• Mathematica function for creating the Nyquist plot (http:/ / reference. wolfram. com/ mathematica/ ref/
NyquistPlot. html)

Nichols plot

A Nichols plot.

The Nichols plot is a plot used in signal processing and control design,
named after American engineer Nathaniel B. Nichols.[1][2][3]

Use in Control Design

Given a transfer function,

with the closed-loop transfer function defined as,

the Nichols plots displays versus . Loci of constant and
are overlaid to allow the designer to obtain the closed loop transfer function directly from the open

loop transfer function. Thus, the frequency is the parameter along the curve. This plot may be compared to the
Bode plot in which the two inter-related graphs - versus and versus

) - are plotted.
In feedback control design, the plot is useful for assessing the stability and robustness of a linear system. This
application of the Nichols plot is central to the Quantitative feedback theory (QFT) of Horowitz and Sidi, which is a
well known method for robust control system design.

In most cases, refers to the phase of the system's response. Although similar to a Nyquist plot, a
Nichols plot is plotted in a Cartesian coordinate system while a Nyquist plot is plotted in a polar coordinate system.

References
[1] Isaac M. Howowitz, Synthesis of Feedback Systems, Academic Press, 1963, Lib Congress 63-12033 p. 194-198
[2] Boris J. Lurie and Paul J. Enright, Classical Feedback Control, Marcel Dekker, 2000, ISBN 0-8247-0370-7 p. 10
[3] Allen Stubberud, Ivan Williams, and Joseph DeStefano, Shaums Outline Feedback and Control Systems, McGraw-Hill, 1995, ISBN

0-07-017052-5 ch. 17

External links
• Mathematica function for creating the Nichols plot (http:/ / reference. wolfram. com/ mathematica/ ref/

NicholsPlot. html)
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Phase margin
In electronic amplifiers, the phase margin (PM) is the difference between the phase, measured in degrees, and 180°,
for an amplifier's output signal (relative to its input), as a function of frequency. Typically the open-loop phase lag
(relative to input) varies with frequency, progressively increasing to exceed 180°, at which frequency the output
signal becomes inverted, or antiphase in relation to the input. The PM as defined will be positive but decreasing at
frequencies less than the frequency at which inversion sets in (at which PM = 0), and PM is negative (PM < 0) at
higher frequencies. In the presence of negative feedback, a zero or negative PM at a frequency where the loop gain
exceeds unity (1) guarantees instability. Thus positive PM is a "safety margin" that ensures proper (non-oscillatory)
operation of the circuit. This applies to amplifier circuits as well as more generally, to active filters, under various
load conditions (e.g. reactive loads). In its simplest form, involving ideal negative feedback voltage amplifiers with
non-reactive feedback, the phase margin is measured at the frequency where the open-loop voltage gain of the
amplifier equals the desired closed-loop DC voltage gain.
More generally, PM is defined as that of the amplifier and its feedback network combined (the "loop", normally
opened at the amplifier input), measured at a frequency where the loop gain is unity, and prior to the closing of the
loop, through tying the output of the open loop to the input source, in such a way as to subtract from it.
In the above loop-gain definition, it is assumed that the amplifier input presents zero load. To make this work for
non-zero-load input, the output of the feedback network needs to be loaded with an equivalent load for the purpose
of determining the frequency response of the loop gain.
It is also assumed that the graph of gain vs. frequency crosses unity gain with a negative slope and does so only
once. This consideration matters only with reactive and active feedback networks, as may be the case with active
filters.
Phase margin and its important companion concept, gain margin, are measures of stability in closed-loop,
dynamic-control systems. Phase margin indicates relative stability, the tendency to oscillate during its damped
response to an input change such as a step function. Gain margin indicates absolute stability and the degree to which
the system will oscillate, without limit, given any disturbance.
The output signals of all amplifiers exhibit a time delay when compared to their input signals. This delay causes a
phase difference between the amplifier's input and output signals. If there are enough stages in the amplifier, at some
frequency, the output signal will lag behind the input signal by one cycle period at that frequency. In this situation,
the amplifier's output signal will be in phase with its input signal though lagging behind it by 360°, i.e., the output
will have a phase angle of −360°. This lag is of great consequence in amplifiers that use feedback. The reason: the
amplifier will oscillate if the fed-back output signal is in phase with the input signal at the frequency at which its
open-loop voltage gain equals its closed-loop voltage gain and the open-loop voltage gain is one or greater. The
oscillation will occur because the fed-back output signal will then reinforce the input signal at that frequency.[1] In
conventional operational amplifiers, the critical output phase angle is −180° because the output is fed back to the
input through an inverting input which adds an additional −180°.
In practice, feedback amplifiers must be designed with phase margins substantially in excess of 0°, even though 
amplifiers with phase margins of, say, 1° are theoretically stable. The reason is that many practical factors can reduce 
the phase margin below the theoretical minimum. A prime example is when the amplifier's output is connected to a 
capacitive load. Therefore, operational amplifiers are usually compensated to achieve a minimum phase margin of 
45° or so. This means that at the frequency at which the open and closed loop gains meet, the phase angle is −135°. 
The calculation is: {{{1}}} See Warwick or Stout for a detailed analysis of the techniques and results of 
compensation to insure adequate phase margins. See also the article "Pole splitting". Often amplifiers are designed to 
achieve a typical phase margin of 60 degrees. If the typical phase margin is around 60 degrees then the minimum 
phase margin will typically be greater than 45 degrees. A phase margin of 60 degrees is also a magic number
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because it allows for the fastest settling time when attempting to follow a voltage step input (a Butterworth design).
An amplifier with lower phase margin will ring[2] for longer and an amplifier with more phase margin will take a
longer time to rise to the voltage step's final level.
A related measure is gain margin. While phase margin comes from the phase where the loop gain equals one, the
gain margin is based upon the gain where the phase equals -180 degrees.

Footnotes
[1] Ibid, p. 245.
[2] Ringing is the displaying of a decaying oscillation for a portion of the output signal's cycle; see ringing artifacts.
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Argument principle

The simple contour C (black), the zeros of f
(blue) and the poles of f (red). Here we have

.

In complex analysis, the argument principle (or Cauchy's argument
principle) relates the difference between the number of zeros and
poles of a meromorphic function to a contour integral of the function's
logarithmic derivative.

Specifically, if f(z) is a meromorphic function inside and on some
closed contour C, and f has no zeros or poles on C, then

where N and P denote respectively the number of zeros and poles of
f(z) inside the contour C, with each zero and pole counted as many
times as its multiplicity and order, respectively, indicate. This
statement of the theorem assumes that the contour C is simple, that is,
without self-intersections, and that it is oriented counter-clockwise.

More generally, suppose that f(z) is a meromorphic function on an open set Ω in the complex plane and that C is a
closed curve in Ω which avoids all zeros and poles of f and is contractible to a point inside Ω. For each point z ∈ Ω,
let n(C,z) be the winding number of C around z. Then

where the first summation is over all zeros a of f counted with their multiplicities, and the second summation is over
the poles b of f counted with their orders.
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Interpretation of the contour integral

The contour integral can be interpreted in two ways:

• as the total change in the argument of f(z) as z travels around C, explaining the name of the theorem; this follows
from

and the relation between arguments and logarithms.
• as 2πi times the winding number of the path f(C) around the origin, using the substitution w = f(z):

Proof of the argument principle
Let zN be a zero of f. We can write f(z) = (z − zN)kg(z) where k is the multiplicity of the zero, and thus g(zN) ≠ 0. We
get

and

Since g(zN) ≠ 0, it follows that g' (z)/g(z) has no singularities at zN, and thus is analytic at zN, which implies that the
residue of f′(z)/f(z) at zN is k.
Let zP be a pole of f. We can write f(z) = (z − zP)−mh(z) where m is the order of the pole, and h(zP) ≠ 0. Then,

and

similarly as above. It follows that h′(z)/h(z) has no singularities at zP since h(zP) ≠ 0 and thus it is analytic at zP. We
find that the residue of f′(z)/f(z) at zP is −m.
Putting these together, each zero zN of multiplicity k of f creates a simple pole for f′(z)/f(z) with the residue being k,
and each pole zP of order m of f creates a simple pole for f′(z)/f(z) with the residue being −m. (Here, by a simple pole
we mean a pole of order one.) In addition, it can be shown that f′(z)/f(z) has no other poles, and so no other residues.
By the residue theorem we have that the integral about C is the product of 2πi and the sum of the residues. Together,
the sum of the k 's for each zero zN is the number of zeros counting multiplicities of the zeros, and likewise for the
poles, and so we have our result.

Applications and consequences
The argument principle can be used to efficiently locate zeros or poles of meromorphic functions on a computer.

Even with rounding errors, the expression will yield results close to an integer; by determining

these integers for different contours C one can obtain information about the location of the zeros and poles.
Numerical tests of the Riemann hypothesis use this technique to get an upper bound for the number of zeros of
Riemann's function inside a rectangle intersecting the critical line.
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The proof of Rouché's theorem uses the argument principle.
Modern books on feedback control theory quite frequently use the argument principle to serve as the theoretical basis
of the Nyquist stability criterion.
A consequence of the more general formulation of the argument principle is that, under the same hypothesis, if g is
an analytic function in Ω, then

For example, if f is a polynomial having zeros z1, ..., zp inside a simple contour C, and g(z) = zk, then

is power sum symmetric polynomial of the roots of f.
Another consequence is if we compute the complex integral:

for an appropriate choice of g and f we have the Abel–Plana formula:

which expresses the relationship between a discrete sum and its integral.

Generalized argument principle
There is an immediate generalization of the argument principle. The integral

is equal to g evaluated at the zeroes, minues g evaluated at the poles.

History
According to the book by Frank Smithies (Cauchy and the Creation of Complex Function Theory, Cambridge
University Press, 1997, p. 177), Augustin-Louis Cauchy presented a theorem similar to the above on 27 November
1831, during his self-imposed exile in Turin (then capital of the Kingdom of Piedmont-Sardinia) away from France.
However, according to this book, only zeroes were mentioned, not poles. This theorem by Cauchy was only
published many years later in 1974 in a hand-written form and so is quite difficult to read. Cauchy published a paper
with a discussion on both zeroes and poles in 1855, two years before his death.
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