
Young Won Lim
5/4/19

Arrows (1A)

Young Won Lim
5/4/19

 Copyright (c) 2016 - 2019 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Arrow (1A) 3 Young Won Lim

5/4/19

Based on

aaa

Arrow (1A) 4 Young Won Lim

5/4/19

a monadic type m a :
a computation delivering an a

an arrow type a b c :
a computation with input of type b delivering a c

the application of the parameterised type a
to the two parameters b and c

arrows make the dependence on input explicit

– John Hughes, Generalising Monads to Arrows [1]
Science of Computer Programming 37 (2000)
www.elsevier.nl/locate/scicoGeneralising monads to arrowsJohn Hughes

https://en.wikibooks.org/wiki/Haskell/Understanding_arrows

An arrow type

Arrow (1A) 5 Young Won Lim

5/4/19

https://en.wikibooks.org/wiki/Haskell/Understanding_arrows

Monadic and Arrow types

 A b c

Computations with an input resulting in output value

imperative code

arrow type M a

computations resulting in output value

imperative code

monadic type

Monad Arrow

Arrow (1A) 6 Young Won Lim

5/4/19

Arrow a b c

represents a process that
takes as input something of type b and
outputs something of type c.

the application of the parameterised type a
to the two parameters b and c

https://wiki.haskell.org/Arrow_tutorial

The Arrow

b c

Function application

a

a ::Arrow

Arrow (1A) 7 Young Won Lim

5/4/19

arr builds an arrow out of a function.
This function is arrow-specific.

arr :: (Arrow a) => (b -> c) -> a b c

A computation a takes inputs of some type b and
produces outputs of another type c.

Each function (b -> c) may be treated as a computation

https://wiki.haskell.org/Arrow_tutorial

arr

b c

b c

Function application

arr

a

a ::Arrow

Arrow (1A) 8 Young Won Lim

5/4/19

Prelude> import Control.Arrow
Prelude Control.Arrow> let a1 = arr (+)
Prelude Control.Arrow> :t a1
a1 :: (Arrow a1, Num a) => a1 a (a -> a)
Prelude Control.Arrow> a1 3 4
7

Prelude Control.Arrow> let a2 = arr (+3)
Prelude Control.Arrow> a2 4
7
Prelude Control.Arrow> :t a2
a2 :: (Arrow a, Num c) => a c c

http://tuttlem.github.io/2014/07/26/practical-arrow-usage.html

The Arrow

(+)
b c

Function application

arr

a ::Arrow

b ca

Arrow (1A) 9 Young Won Lim

5/4/19

Arrow composition is achieved with (>>>).
This takes two arrows and chains them together,
one after another.
It is also arrow- specific.

(>>>) :: (Arrow a) => a b c -> a c d -> a b d

https://wiki.haskell.org/Arrow_tutorial

The Arrow composition

b c

b c

a c d

c d

a b d

b d

a(>>>)

Arrow (1A) 10 Young Won Lim

5/4/19

First and second make a new arrow out of an existing arrow.

They perform a transformation (given by their argument)
on either the first or the second item of a pair.
These definitions are arrow-specific.

first :: (Arrow a) => a b c -> a (b, d) (c, d)

second :: (Arrow a) => a b c -> a (d, b) (d, c)

https://wiki.haskell.org/Arrow_tutorial

first and second

Arrow (1A) 11 Young Won Lim

5/4/19

data STRef s a

a value of type STRef s a is a mutable variable in state thread s,
containing a value of type a

>>> :{
runST (do
 ref <- newSTRef "hello"
 x <- readSTRef ref
 writeSTRef ref (x ++ "world")
 readSTRef ref)
:}
"helloworld"

https://wiki.haskell.org/Arrow_tutorial

first and second

Young Won Lim
5/4/19

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12

