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a monadic type m a  : 
a computation delivering an a 

an arrow type a b c :  
a computation with input of type b delivering a c 

the application of the parameterised type a 
to the two parameters b and c

arrows make the dependence on input explicit

– John Hughes, Generalising Monads to Arrows [1]
Science of Computer Programming 37 (2000) 
www.elsevier.nl/locate/scicoGeneralising monads to arrowsJohn Hughes

https://en.wikibooks.org/wiki/Haskell/Understanding_arrows

An arrow type 
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https://en.wikibooks.org/wiki/Haskell/Understanding_arrows

Monadic and Arrow types 

   A  b  c

Computations with an input resulting in output value

imperative code

arrow type   M  a

computations resulting in output value

imperative code

monadic type

Monad Arrow
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Arrow a b c 

represents a process that 
takes as input something of type b and 
outputs something of type c.

the application of the parameterised type a 
to the two parameters b and c

https://wiki.haskell.org/Arrow_tutorial

The Arrow 

b c

Function application 

a

a ::Arrow
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arr builds an arrow out of a function. 
This function is arrow-specific. 

arr :: (Arrow a) => (b -> c) -> a b c

A computation a takes inputs of some type b and 
produces outputs of another type c.

Each function (b -> c) may be treated as a computation 

https://wiki.haskell.org/Arrow_tutorial

arr 

b c

b c

Function application 

arr

a

a ::Arrow
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Prelude> import Control.Arrow
Prelude Control.Arrow> let a1 = arr (+)
Prelude Control.Arrow> :t a1
a1 :: (Arrow a1, Num a) => a1 a (a -> a)
Prelude Control.Arrow> a1 3 4
7

Prelude Control.Arrow> let a2 = arr (+3) 
Prelude Control.Arrow> a2 4
7
Prelude Control.Arrow> :t a2
a2 :: (Arrow a, Num c) => a c c

http://tuttlem.github.io/2014/07/26/practical-arrow-usage.html

The Arrow 

(+)
b c

Function application 

arr

a ::Arrow

b ca
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Arrow composition is achieved with (>>>). 
This takes two arrows and chains them together, 
one after another. 
It is also arrow- specific. 

(>>>) :: (Arrow a) => a b c -> a c d -> a b d

https://wiki.haskell.org/Arrow_tutorial

The Arrow composition  

b c

b c

a c d

c d

a b d

b d

a(>>>)
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First and second make a new arrow out of an existing arrow.

They perform a transformation (given by their argument) 
on either the first or the second item of a pair. 
These definitions are arrow-specific. 

first :: (Arrow a) => a b c -> a (b, d) (c, d)

second :: (Arrow a) => a b c -> a (d, b) (d, c)

https://wiki.haskell.org/Arrow_tutorial

first and second
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data STRef s a

a value of type STRef s a is a mutable variable in state thread s, 
containing a value of type a

>>> :{
runST (do
    ref <- newSTRef "hello"
    x <- readSTRef ref
    writeSTRef ref (x ++ "world")
    readSTRef ref )
:}
"helloworld"

https://wiki.haskell.org/Arrow_tutorial

first and second
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