First Order Logic (3A)

Young W. Lim 10/30/15 Copyright (c) 2013 - 2015 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com. This document was produced by using LibreOffice/OpenOffice.

Alphabet of First-Order Logic

- 1. Constants : Socrates, John
- 2. Predicates : True, False, and married, love
- 3. Functions : mother, weight
- 4. Variables : a lower case letter x, y, z
- 5. Operators : \neg , \land , \lor , \rightarrow , \leftrightarrow
- 6. Quantifiers : \forall , \exists
- 7. Grouping Symbols : (), comma

Non-logical Symbols

- 1. Constants : Socrates, John
- 2. Predicates : True, False, and married, love
- 3. Functions : mother, weight

Traditional philosophy / logic assumes The existence of a fixed, infinite set of non-logical symbols Only one language of first-order logic

AI application specifies non-logical symbols that are appropriate to the application (signature)

Rules of Propositional Logic

- 1. a term
 - (a) a constant symbol
 - (b) a variable symbol
 - (c) a function symbol (comma separated terms)
- 2. a atomic formula
 - (a) a predicate symbol
 - (b) a predicate symbol (comma separated terms)
 - (c) two terms separated by =
- 3. a formula
 - (a) an atomic formula
 - (b) ¬ formula
 - (c) two formula separated by $\Lambda,\ V, \rightarrow, \leftrightarrow$
 - (d) $\{\forall \text{ or } \exists\} \{\text{variable}\} \{\text{formula}\}$
- 4. a sentence : a formula without free variables

A signature determines the language

Given a language, a model consists of

- 1. A nonempty set D of entities : a domain of discourse
- 2. An interpretation that consists of
 - (a) an entity in D → each of the constant symbols
 Usually every entity is assigned
 - (b) for each function, an entity \rightarrow each possible input
 - (c) the predicate true ← the value T
 the predicate false ← the value F
 - (d) for every other predicate,

the value T or $F \rightarrow$ each possible input of the entities to the predicate

The truth values of all sentences

- 1. \neg , Λ , V, \rightarrow , \leftrightarrow in the same way in propositional logic
- two terms separated by = symbol has T if both terms
 Refer to the same entity
- 3. $\forall x p(x)$ has the value T if p(x) has value T for every assignment to x of an entity in D
- 4. $\exists x p(x)$ has the value T if p(x) has value T for at least one assignment to x of an entity in D
- 5. the operator precedence \neg , Λ , V, \rightarrow , \leftrightarrow
- 6. the quantifiers precedes the operators
- 7. () changes the precedence

Satisfied

If sentence s has T under interpretation I, I satisfies s

A sentence is satisfiable if there is some interpretation under which it has T

A formula that contains free variables and therefore not sentence, then an interpretation alone does not determine its truth value

A formula that contains free variables is satisfied by any interpretation that assigns T to the formula for every individual of its free variables in D

Valid

A formula is valid If it is satisfied by every interpretation

A formula is contradict If there is no interpretation that satisfies it

Given tow formulas A and B If $A \rightarrow B$ is valid

A logically implies B

Given tow formulas A and B

If $A \leftrightarrow B$ is valid

A logically equivalent to B

Logical Arguments

An argument consists of A set of formulas (premises) and A formula (conclusion)

The premises entail the conclusion If in every model in which all the premises are true, the conclusion is also true

The argument is sound: If the premises entail the conclusion

Otherwise, the argument is a fallacy

Universal Instantiation

First Order Logic (3B)

Existential Instantiation

Modus Ponens

Unification

References

- [1] en.wikipedia.org
- [2] en.wiktionary.org
- [3] U. Endriss, "Lecture Notes : Introduction to Prolog Programming"
- [4] http://www.learnprolognow.org/ Learn Prolog Now!
- [5] http://www.csupomona.edu/~jrfisher/www/prolog_tutorial
- [6] www.cse.unsw.edu.au/~billw/cs9414/notes/prolog/intro.html
- [7] www.cse.unsw.edu.au/~billw/dictionaries/prolog/negation.html
- [8] http://ilppp.cs.lth.se/, P. Nugues,`An Intro to Lang Processing with Perl and Prolog
- [9] Contemporary Artificial Intelligence, Neapolitan & Jia
- [10] Discrete Mathematics, Johnsonabaugh